
INtegrated TOol chain for model-based design of CPSs

The INTO-CPS Examples Compendium

Version: 1.5

Date: September 2019

The INTO-CPS Association

http://into-cps.org



Examples Compendium (Public)

Contributors:

Richard Payne, UNEW
Carl Gamble, UNEW
Ken Pierce, UNEW
John Fitzgerald, UNEW
Martin Mansfield, UNEW
Simon Foster, UY
Kangfeng Ye, UY
Casper Thule, AU
Rene Nilsson, AU
Kenneth Lausdahl, AU
Florian Lapschies, VSI
Frederik Foldager, AI

Editors:

John Fitzgerald, UNEW

©The INTO-CPS Association

2



Examples Compendium (Public)

Document History

Ver Date Author Description
0.1 15-05-2017 Richard Payne Draft structure of deliverable and initial re-

framing based on D3.5
0.2 27-10-2017 Martin Mansfield Added Autonomous Vehicle and Mass Spring

Damper pilots
0.3 01-11-2017 Martin Mansfield Version for internal review
1.0 14-12-2017 Martin Mansfield Review comments addressed
1.1 26-02-2018 Peter Gorm Larsen initial version for the INTO-CPS Association
1.2 07-10-2018 John Fitzgerald Alignment with other Association documents
1.3 02-11-2018 Casper Thule Updated list of examples and example links
1.4 06-11-2018 Casper Thule Added IPP4CPPS to list of examples
1.5 27-09-2019 Casper Thule Added CoHLA under single water tank and

room thermostat

3



Examples Compendium (Public)

Abstract
This document is intended for users of the INTO-CPS technologies and contains a col-
lection of example and pilot study model descriptions demonstrating the INTO-CPS
technology. Each study has a description of the example, the models available for the
study and examples of the analyses available with the INTO-CPS Tool Chain. The ex-
amples demonstrate the INTO-CPS tools developed during (and after) the INTO-CPS
project. This compendium is a living document that has grown with the tool chain. This
document is a snapshot of the compendium presently, building on previous versions (in
M12 [FGP+15], M24 [PGP+16] and M36 [MGP+17]). The latest version can always be
found at https://github.com/INTO-CPS-Association/training/releases.
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1 Introduction
This document provides an overview of different public example multi-models that stake-
holders who are interested in experimenting with the INTO-CPS technology can use
as a starting point. The examples have been developed using the different simulation
technologies in INTO-CPS: 20-sim1; Overture/VDM-RT2; OpenModelica3; SysML4; and
RT-Tester5). The examples are comprised of multi-models using the INTO-CPS SysML
profile and collections of Continuous Time (CT) and Discrete Event (DE) models elicited
from the simulation models. Examples of their use is also given, demonstrating features
and analyses made available by the INTO-CPS tool chain.

This deliverable is structured in different sections, each of which provides a brief introduc-
tion to each example model. Each example illustrates different aspects of the INTO-CPS
tool chain, as summarised here:

• Section 2 presents a Single-tank Water Tank model. The simplest example in the
compendium, this is a two-model multi-model, using 20-sim and VDM-RT FMUs.
The example has a SysML architecture, can be co-simulated, and has support for
Design Space Exploration (DSE).

• Section 3 presents a Three-tank Water Tank model. This study aims to demonstrate
the division of CT elements across different FMUs. The study comprises 20-sim
and VDM-RT FMUs and demonstrates DSE and Test Automation technologies.

• Section 4 presents a Fan Coil Unit (FCU). Originally presented as a baseline Open-
Modelica model. This model demonstrates the options for multi-modelling and
dividing models into separate FMUs to allow for architecting to be carried out in
the SysML architectural model. The example demonstrates the use of co-simulation
and DSE.

• Section 5 presents a Line-following Robot. This study has four possible co-simulation
multi-models – two using replication offered by 20-sim FMUs (one using 3D visual-
isation and one without) and another two configurations which are not using FMU
replication. The study provides several DSE experiments.

• Section 6 presents a Turn Indicator example. In this study, the behaviour of a car’s
turn indicator is modelled using parallel state-charts. This model is then used to
automatically derive tests and to perform model checking.

• Section 7 presents a single-UAV model, which models the physical dynamics as
well as the discrete controller of an Unmanned Aerial Vehicle (UAV). The model
contributes a high-fidelity physical model, enabling the multi-model to be used to
compare alternative control algorithms.

• Section 8 presents an Ether communication model. This pilot provides an initial
demonstration of a model for network communications. This pilot is VDM-RT only,
with a simple SysML architecture. Co-simulation takes the form of the demonstra-

1http://www.20sim.com
2http://overturetool.org
3https://openmodelica.org
4Using the Modelio tool: https://www.modeliosoft.com
5https://www.verified.de/products/rt-tester/
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tion of messages passing through the ether. The intention is that this pilot will be
used in the future by others using network communications.

• Section 9 presents a swarm of communicating simplified UAVs. This pilot is a first
version of a swarm of UAVs which receive direction from a central controller. The
pilot uses FMUs from 20-sim and VDM-RT taking advantage of FMU replication
offered by both notations. Co-Simulation and 3D visualisation are supported.

• Section 10 presents an autonomous vehicle model. In this study, a multi-model
demonstrates a vehicle traversing a path of defined waypoints. The multi-model
comprises two FMUs; The dynamics of the vehicle are modelled by a 20-sim FMU,
and the vehicle control is determined by a VDM-RT FMU. The example has a
SysML architecture, can be co-simulated, and has support for DSE.

• Section 11 presents a mass spring damper model. The pilot uses models of masses
and springs to demonstrate the utility of so-simulation stabilisation using both 20-
sim and OpenModelica FMUs.

• The IPP4CPPS presents a production line for USB-OTG sticks and uses VDM-RT
FMUs. It is available at https://github.com/INTO-CPS-Association/example-ipp4cpps.

In order to guide you in what models to consider inspecting, we have created Table 1
illustrating the different characteristics of the different publicly available models.
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Single-tank Water Tank x x x x x x x
Three-tank Water Tank x x x x x x x x
Fan Coil Unit (FCU) x x x x x x x x x x
Line-following Robot x x x x x x x x x x
Turn Indicator x x
Single UAV x x x x x
Ether x x x x x
UAV Swarm x x x x x x x x
Autonomous Vehicle x x x x x
Mass Spring Damper x x x
IPP4CPPS x x x x

Table 1: Overview of INTO-CPS technologies used for pilot studies. Unmaintained
models are marked with
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2 Single-tank Water Tank

2.1 Example Description

The single-tank water tank pilot study is a simple example that comprises a single water
tank which is controlled by a cyber controller. When the water level of the tank reaches
a particular level (defined in the controller) the controller sends a command to the tank
to empty using an exit valve. A diagram of the example is shown in Figure 1. This
pilot is also related to the next pilot in Section 3. An alternative version of this example
is available6, which is based on Configuring HLA (CoHLA). CoHLA is a co-simulation
construction domain specific language based on the High Level Architecture standard for
coordination of co-simulation.

Figure 1: Overview of the single-tank water tank example

2.2 Usage

The example is available from the INTO-CPS application menu at File>Import Ex-
ample Project or at https://github.com/INTO-CPS-Association/example-single_
watertank in the master branch. There are several subfolders for the various elements:
FMU contains the various FMUs of the study; Models – contains the constituent models
defined using the INTO-CPS simulation technologies; Multi-models – contains the multi-
model definition; and SysML – contains the SysML model defined for the study.

The case-study_single_watertank folder can be opened in the INTO-CPS application
to run the various co-simulations as detailed in this document. To run a simulation,
expand one of the multi-models and click ‘Simulate’ for an experiment.

2.3 INTO-CPS SysML profile

The single tank SysML model produced using the INTO-CPS profile comprises two dia-
grams; an Architecture Structure Diagram (ASD) and a Connections Diagram (CD).

6https://github.com/INTO-CPS-Association/Documentation/blob/master/CoHLA-INTO-CPS/
CoHLA%20-%20INTO-CPS.pdf
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The ASD in Figure 2 shows the system composition in terms of component subsystems
from the perspective of multi-modelling.

Figure 2: Architecture Structure Diagram defining the Single-tank Water Tank system
composition

This SingleTankSystem model, comprises a single WaterTank physical component and
a cyber component Controller. Ports are exposed by the WaterTank component for
outputting the current water level (level) and for receiving valve control commands
(valvecontrol). The Controller component has reciprocal ports and also variables to
define the permitted minimum and maximum water levels (minlevel and maxlevel re-
spectively).

The WaterTank component is defined as a continuous time model with 20-sim as the
target platform, this may be also be defined as OpenModelica. The Controller component
is a VDM-RT discrete event model.

A single System Block Instance is defined in the model to represent the system configu-
ration. The CD in Figure 3 shows that the WaterTank component has two connections
with the Controller cyber component - regarding the level and valve control.

Figure 3: Connections Diagram defining the Single-tank Water Tank system connections

10
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2.4 Multi-model

2.4.1 Models

The SysML model above dictates there are two models: a 20-sim model for the water
tank and a VDM-RT model for the controller. This section gives an overview of those
models.

Watertank.emx The 20-sim model of the Water Tank component, shown in Figure 4,
comprises several sub-components. A flow source is connected to a tank, which fills
up at a constant rate. The tank reports the current water level on the level port. A
valve, controlled by the valvecontrol port empties water from the tank into a drain.

Figure 4: 20-sim Water Tank component

WaterTank.mo WaterTank.mo contains a SingleWaterTank model, which has the same
external interface as the above SingleWatertank.emx model – as both comply to the
FMI modeldescription.xml exported format. The model is defined mainly through
equations, and so is not shown in this document.

SingleWT The VDM-RT SingleWT controller is a simple model, with an architecture
shown in Figure 5. The System class owns a HardwareInterface instance with
RealPorts to receive the sensed water level and send valve control commands. The
values are passed to LevelSensor and ValveActuator objects used by the Controller
class. The control algorithm compares the level to the minlevel and maxlevel design
parameters and sets the valve control appropriately.

2.4.2 Configuration

Two multi-models are defined:

mm The multi-model mm corresponds to the CD in Section 2.3. Two connections are
defined:

11
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Figure 5: VDM-RT model architecture

• from the WaterTank level port to the Controller level port; and

• from the Controller valve port to the WaterTank valvecontrol port.

The FMUs used are singlewatertank-20sim.fmu and SingleWT.fmu

There are two design parameters in the multi-model – minlevel and maxlevel,
which are defined to be 1.0 and 2.0 respectively.

mm-OM An alternative multi-model is defined using the OpenModelica FMU. The
connections are identical to the multi-model above, although rather than using the
20-sim FMU, WaterTank_SingleWaterTank.fmu is used.

2.5 Co-simulation

A co-simulation experiment is defined for the multi-model – with a runtime of 30 seconds
and using the fixed step size of 0.1 seconds. Simulating using this experiment produces
the livestream output shown in Figure 6.

The graph shows the water level (orange line) and valve control (blue line) values. The
water level rises steadily until it reaches 2.0 (the maximum level), at this point the valve
control is set to 1.0 and the water level drops to 1.0 (the minimum level). At the minimum
level, the valve is closed and the water rises once again. This behaviour repeats through
to the end of the simulation.

2.6 Analyses and Experiments

2.6.1 Design Space Exploration

This pilot supports DSE. We reuse the DSE experiment used in the Three-tank Water
Tank Pilot study – and is briefly described here. For discussion on results obtained, see
the Three Tank study in Section 3.6.1.

The experiment varies the two design parameters of the study – minlevel and maxlevel.
These parameter values may be set between 0.2 and 2.0 in intervals of 0.2. A constraint on
the parameters (Controller.cont.maxlevel > Controller.cont.minlevel) ensures
that the maximum water value is always larger than the minimum water level.

12
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Figure 6: Co-simulation results for Single-tank Water Tank system

Two objectives are defined: cumulativeDeviation and vCount. The first objective, cu-
mulativeDeviation, is to minimise the cumulative deviation from a desired level - set to
1.0. The second objective, vCount, is to minimise the number of valve operations – i.e.
have a lower number of valve state changes. The analysis uses the Pareto method for
ranking.

2.6.2 Code Generation

The VDM-RT model, SingleWT can be exported from Overture as a C code FMU, in ad-
dition to the tool wrapper FMU as used above. The watertankController-SourceCode.FMU
included in this pilot is obtained directly from Overture using the “Export Source Code
FMU” option. However, this FMU does not contain binaries for co-simulation and so one
may use the FMU Builder included in the INTO-CPS Application to compile FMUs for
Windows, Mac and Linux.

This process has been performed and the resultant FMU is included in the pilot in the
FMUs folder; watertankController-Standalone.FMU. One example experiment available
is to switch this FMU for the tool wrapper version – SingleWT.FMU – and compare
results.

13
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3 Three-tank Water Tank

3.1 Example Description

The three-tank water tank model is based upon a standard 20-sim example, and is devel-
oped to explore the impact on accuracy of multi-modelling across multiple CT models.
The example comprises three water tanks which are filled and emptied. The first tank is
filled from a source with a valve which may be turned on and off. The outflow of the first
tank constitutes the inflow of the second, and so forth. A controller monitors the level of
the third tank and controls a valve to a drain.

A key feature of this example is the close coupling required between water tank 1 and 2,
and the loose coupling to water tank 3. Water tanks 1 and 2 are tall and thin and are
connected by a pipe at the bottom of the tanks (a diagram of the example is shown in
Figure 7), and therefore changes to the level of water tank 1 (due to water entering from
the source) will quickly affect the level in water tank 2. This effect is not as prevalent
between water tank 2 and 3.

water 
tank 1

water 
tank 2

water tank 3

source

drain

Figure 7: Overview of the three-tank water tank example

This pilot expands that in Section 2.

3.2 Usage

The example is available from the INTO-CPS application menu at File>Import Exam-
ple Project or at https://github.com/INTO-CPS-Association/example-three_tank_
watertank in the master branch. There are several subfolders for the various elements:
DSEs - contains work in progress DSE scripts; FMU – contains the various FMUs of the
study; Models – contains the constituent models defined using the INTO-CPS simulation
technologies; Multi-models – contains the multi-model definitions and co-simulation con-
figurations; SysML – contains the SysML models defined for the study; resources – various
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images for the purposes of this readme file.

The case-study_three_tank folder can be opened in the INTO-CPS application to run
the various co-simulations as detailed in this document. To run a simulation, expand one
of the multi-models and click ‘Simulate’ for an experiment.

3.3 INTO-CPS SysML profile

A SysML model produced using the INTO-CPS profile comprises three diagrams and
focusses on the structure of the water tank model for multi-modelling; an Architecture
Structure Diagram and two Connections Diagrams.

The Architecture Structure Diagram (ASD) in Figure 8 shows the system composition in
terms of component subsystems from the perspective of multi-modelling. As discussed
in [FGP+15], this architecture differs from a holistic architecture due to the grouping of
tanks into the different subsystems.

Figure 8: Architecture Structure Diagram defining the Three-tank Water Tank system
composition

In this Water Tank system model, the water tanks are split between two subsystems:
WaterTanks1 subsystem contains the Source, two Water Tank and Pipe components;
WaterTanks2 subsystem comprises a single Water Tank and Drain components; a cyber
component Controller contains no other components; and the 3D component is available
for visualising the behaviour of the system.

To allow the visualisation FMU to depict the internal workings of the system’s compo-
nents, additional ports have been defined for the WaterTanks1 and WaterTanks2 blocks.
The WaterTanks1 component exposes: Tank1InFlow – corresponding to the rate of water
flowing into Tank1 ; Tank1WaterLevel – the water level of Tank1 ; and Tank2WaterLevel
– the water level of Tank2. The WaterTanks2 component exposes the additional ports:
Tank3OutFlow – corresponding to the rate of water flowing out of Tank3 and puddle –
the current volume of water in the drain (or puddle).

The two water tank subsystems are defined as continuous time models, both with 20-
sim as the target platform. The controller component is a VDM-RT discrete event
model.

Two System Block Instances are defined in the model to represent alternative system
configurations – they are defined in separate Connections Diagrams (CDs). The CD in

15
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Figure 9 defines connections as follows: at the subsystem-level, the output of water from
the WaterTanks1 subsystem is input to the WaterTanks2 subsystem. This subsystem
has two connections with the Controller cyber component - regarding the level and valve
control.

Figure 9: Connections Diagram defining the Three-tank Water Tank system connections

Figure 10 depicts the second CD with several connectors between the system component
instances and the 3D visualisation block instance. The connections in Figure 9 are still
present, with additional connections sending state information relating to tank water
levels, flow rates and controller behaviour to the 3D model.

Figure 10: Connections Diagram defining the Three-tank Water Tank system connections
and elements for visualisation

3.4 Multi-model

3.4.1 Models

Given the ASD of the SysML model in Section 3.3, three (simulation) models are defined;
two 20-sim subsystems and a VDM subsystem as shown in Figure 11(a).

WaterTanks1, WaterTanks2 The partitioning of the 20-sim model is straightforward,
with a single signal between the two 20-sim subsystems representing the flow of
water between tanks 2 and 3. The rationale behind this split is that the flow rate
between tank 1 and 2 has a high frequency and amplitude, suggesting that splitting
the two tanks would result in erroneous results when time steps are imposed in
co-simulation.

Controller The VDM-RT controller model is a simple controller, which governs Tank3.
The VDM-RT model contains a System class containing HardwareInterface and
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(a) Subsystems of Three-tank Water Tank multi-model

(b) WaterTanks1 subsystem (c) WaterTanks2 subsystem

Figure 11: 20-sim models for the Three-tank Water Tank multi-model

Controller objects – hwi and controller, respectively. The hwi object includes the
input and output variables of the model and design parameters. The controller
object is supplied with an instance of the LevelSensor (sensor) and ValveActuator
(valve) classes – each given access to different parts of the hwi object. The sensor
object represents the sensor that measures the current water level, and valve is
represents the valve at the bottom of the tank.

The control loop retrieves the current level of water from the sensor and determines
whether to set the valve to be open or closed depending on the level compared to
some set maximum or minimum value.

3.4.2 Configuration

Two multi-models are defined for the Three Tank Study corresponding to the two System
block instances defined in the CDs of the SysML model in Section 3.3.

In the first multi-model (Non-3D), there are three FMUs and three connections. The
FMUs comprise: WaterTankController, threewatertank1 and threewatertank2 – exported
from the VDM-RT and 20-sim models described above. The connections are as follows:
firstly between the flow port ofWaterTanks1 to the inFlow ofWaterTanks2 ; secondly be-
tween valveControl port of the WaterTanks2 model to the wt3_valve of the Controller ;
and finally from the wt3_level of the Controller to the level port ofWaterTanks2.

In addition, there are two design parameters – wt3_min and wt3_max, both of type
real.

The complete configuration is given in Figure 12.

The second multi-model (3D) uses the 3D visualisation FMU, and has additional con-
nections to that FMU, as shown in Figure 13.
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� �
{

"fmus":{
"{c}":"WaterTankController.fmu",
"{t1}":"threewatertank1.fmu",
"{t2}":"threewatertank2.fmu"

},
"connections":{

"{c}. controller.wt3_valve":["{t2}.tank2.valveControl"],
"{t1}.tank1.Tank2OutFlow":["{t2}. tank2.inFlow"],
"{t2}.tank2.level":["{c}. controller.wt3_level"]

},
"parameters":{

"{c}. controller.wt3_max":1.7,
"{c}. controller.wt3_min":1.3

}
}� �

Figure 12: Configuration file for Three-tank Water Tank system

� �
{

"fmus":{
"{c}":"WaterTankController.fmu",
"{t1}":"threewatertank1.fmu",
"{t2}":"threewatertank2.fmu",
"{3d}":"3DAnimationFMU.fmu"

},
"connections":{

"{c}. controller.wt3_valve":["{t2}.tank2.valveControl","{3d}.3 DAnimationFMU.
animation.tank3.valve.control"],

"{t1}.tank1.Tank2OutFlow":["{t2}. tank2.inFlow","{3d}.3 DAnimationFMU.animation.
tank2.outflow"],

"{t2}.tank2.level":["{c}. controller.wt3_level", "{3d}.3 DAnimationFMU.animation.
tank3.waterlevel"],

"{t1}.tank1.Tank1InFlow":["{3d}.3 DAnimationFMU.animation.tank1.inflow"],
"{t1}.tank1.Tank1WaterLevel":["{3d}.3 DAnimationFMU.animation.tank1.waterlevel"],
"{t1}.tank1.Tank2WaterLevel":["{3d}.3 DAnimationFMU.animation.tank2.waterlevel"],
"{t2}.tank2.Tank3OutFlow":["{3d}.3 DAnimationFMU.animation.tank3.outflow"],
"{t2}.tank2.puddle":["{3d}.3 DAnimationFMU.animation.drain.puddle"]

},
"parameters":{

"{c}. controller.wt3_max":1.7,
"{c}. controller.wt3_min":1.3

}
}� �

Figure 13: Configuration file for Three-tank Water Tank system
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3.5 Co-simulation

Using the INTO-CPS Co-simulation Engine (COE), we may simulate the three FMU
multi-model. We are able to log the water level of tank 3 and the flow rate between tank
2 and 3. These values are shown in the graph in Figure 14, using a fixed step size of
0.05. A simulation time of at least 20 seconds is recommended so to observe changes in
controller behaviour.

Figure 14: Simulation results using the INTO-CPS COE

The results in the graph correspond closely to those of the baseline Crescendo model
illustrated in [FGP+15]. During simulation, the water level raised to the maximum value
(2.0 meters) and at 16.3 seconds the tank 3 valve is opened by the VDM-RT controller
and the level drops to just below the minimum (1.0 meters) and at 16.9 seconds the valve
is closed and the water level begins to rise again.

Co-simulating the 3D multi-model opens a 3D visualisation window as shown in Figure 15
which depicts the state of the Three-tank system as the simulation progresses.

3.6 Analyses and Experiments

3.6.1 Design Space Exploration

A simple DSE experiment is included in the project, which demonstrates the use of
the DSE tool support. The experiment varies the two design parameters of the study
– wt3_min and wt3_max. These parameter values may be set between 0.2 and 2.0 in
intervals of 0.2. A constraint on the parameters (controller.controller.wt3_max >
controller.controller.wt3_min) ensures that the maximum water value is always
larger than the minimum water level.

Two objectives are defined: cumulativeDeviation and vCount. The first objective, cu-
mulativeDeviation, is to minimise the cumulative deviation from a desired level - set to
1.0. The second objective, vCount, is to minimise the number of valve operations – i.e.
have a lower number of valve state changes. The use of Pareto ranking, minimising both
objectives gives the resultant graph in Figure 16.
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Figure 15: 3D visualisation of the Three-tank Water Tank system

From the results we see that there is a clear tradeoff to be made between levels which
optimise each objective – it is for the engineer to determine which of these is more
important. The green line on the graph (the left-most set of results) gives this ‘non-
dominated’ set of results – also given as a table as in Figure 17. In broad terms the
ranking shows: levels closer to the desired level (e.g. wt3_min = 1.0 and wt3_max = 1.05)
produce results with a lower cumulative deviation, but higher valve operation count; and
a minimum level further from the desired level (e.g. wt3_min = 0.2) produces results
with a lower valve operation count, but higher cumulative deviation.

3.6.2 Test Automation

Test automation can also be applied to the controller of the three-tank example. A
SysML model exists that represents the test model for this system which can be used
to produce tests for models and implementations of the controller in RT-Tester7. The
model consists of a specified System Under Test (SUT), which in this case corresponds
to the controller, and the Test Environment (TE) which is the rest of the water tank
system, but specifically the water tank the controller is monitoring. A screen shot giving
an overview of the test model is shown in Figure 18.

The SUT and TE are specified using the blocks SystemUnderTest and TestEnvironment,
respectively. The SUT block an input flow port called Stimulation of type Interface1
and an output port of type Interface2. The TE has the same ports but in the opposite
direction. Interface1 specifies the shared variables that the SUT will read from. In this
case it consists of a single variable wt3_level, as seen on the right, which corresponds
to the FMU input. Likewise, Interface2 specifies the shared variable that the SUT will
write to, in this case the variable wt3_valve which gives the valve status. The two blocks
are linked together so that the SUT and TE can communicate on these channels.

In order to generate tests it is necessary to specify an abstract model for the controllers
behaviour, which should be modelled using a timed state machine. We thus created

7Note that this is a different SysML model used for the co-simulation multi-model.
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Figure 16: Design Space Exploration Pareto graph of the Three-tank Water Tank system

the SysML state machine diagram shown in Figure 19. The three-tanks controller is
relatively simple and so the state machine has only two states. The Waiting state
means that the controller is waiting until sufficient time has elapsed to poll the sensors
and act accordingly. It has a single outgoing transition with the guard t.elapsed(1000).
The variable t is a timer for this state machine. It advances in time and can be checked
and reset at certain points, rather like a stop-watch. The state machine changes to the
Responding state once 1000 ms (1 s) has elapsed.

The Responding state contains the main decision logic for the controller. It has three
outgoing edges with guards and actions (the latter are not shown). If the water level
polled on variable wt3_level remains within the safe zone of between 1 and 2 then the
state machine returns to state Responding with no action. If the water level is greater
than or equal to 2, the wt3_valve variable is set to 0 to shut off the valve, and the
controller returns to the Waiting state. Otherwise, if the level is less than or equal to 1,
then the valve is turned on by setting wt3_valve to 1.

This behavioural model must be input into RT-Tester to generate and execute tests. We
do this by first exporting XMI from Modelio by selecting the project name, and then the
menu item Import / Export > Export > XMI export. The model can then be imported
from RT-Tester by selecting Project > Model-based testing > Import model > Import from
file. This currently must be done from the existing water-tanks model available in RT-
Tester to ensure that the FMU is correctly set up. One of the standard test procedures
can then be run, or a new test procedure can be created by selecting New > MBT Test
Procedure and then using test procedure TestProcedures/_P1 as a template. Suitable
tests can be configured from the conf > generation.mbtconf file in the new directory as
illustrated in Figure 20.

The project can then be prepared for executing the tests through the init-Project com-
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Figure 17: Design Space Exploration Pareto front table of the Three-tank Water Tank
system

mand that creates the test FMUs. Finally, the test procedure can be executed by starting
the COE, and then using the run-COE command. This will produce output which is ex-
emplified in Figure 21.

3.6.3 Code Generation

The VDM-RT model, WaterTankController can be exported from Overture as a C
code FMU, in addition to the tool wrapper FMU as used above. TheWaterTankController-
SourceCode.FMU included in this pilot is obtained directly from Overture using the
“Export Source Code FMU” option. However, this FMU does not contain binaries for co-
simulation and so one may use the FMU Builder included in the INTO-CPS Application
to compile FMUs for Windows, Mac and Linux.

This process has been performed and the resultant FMU is included in the pilot in the
FMUs folder; WaterTankController-Standalone.FMU. One example experiment available
is to switch this FMU for the tool wrapper version – WaterTankController.FMU – and
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Figure 18: Overview of the three-tank test model in Modelio

Figure 19: State machine for abstract behaviour of three-tank controller
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Figure 20: Configuring a test procedure

Figure 21: Test procedure output
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compare results.
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4 Fan Coil Unit (FCU)

4.1 Example Description

This example is inspired by the Heating Ventilation and Air Conditioning (HVAC) indus-
trial case study developed in Task T1.3. The Fan Coil Unit (FCU) aims to control the
air temperature in a room through the use of several physical components and software
controllers. Water is heated or cooled in a Heat Pump and flows to the Coil. A Fan blows
air through the Coil. The air is heated or cooled depending upon the Coil temperature,
and flows into the room. A Controller is able to alter the fan speed and the rate of the
water flow from the Heat Pump to the Coil. In addition, the room temperature is affected
by the walls and windows, which constitute the environment of the FCU.

The aim of the system is to maintain a set temperature in the single room in which the
FCU is located. The system is outlined in Figure 22.

Figure 22: Overview of the fan coil unit (FCU) example

4.2 Usage

The example is available from the INTO-CPS application menu at File>Import Example
Project or at https://github.com/INTO-CPS-Association/example-fcu in the master
branch. There are several subfolders for the various elements: DSEs - contains various
work in progress DSE scripts to alter CT and DE parameters; FMU contains the various
FMUs of the study; Models – contains the constituent models defined using the INTO-
CPS simulation technologies; Multi-models – contains the multi-model definitions and
co-simulation configurations; SysML – contains the SysML model defined for the study;
resources – various images for the purposes of the readme file; and userMetricScripts
– contains files for DSE analysis.

The case-study_fcu folder can be opened in the INTO-CPS application to run the
various co-simulations as detailed in this document. To run a simulation, expand one of
the multi-models and click ‘Simulate’ for an experiment.

4.3 INTO-CPS SysML Profile

Three constituent parts are defined – shown in Figure 23: the RoomHeating subsystem,
a Controller cyber component and the physical Environment. The first is a continuous
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subsystem and comprises the Room and Wall components. The figure defines the model
platform to be 20-sim, however, this could be OpenModelica too. All of the physical
elements of the system are contained in a single CT model. The controller subsystem is
a cyber element and modelled in VDM-RT.

Figure 23: SysML Architecture Structure Diagram using INTO-CPS profile correspond-
ing to baseline models

The connections between components, shown in Figure 24, are similar to those in the
baseline CT models, although it should be noted that the subsystem hierarchy is shown,
with the Room component supplying and receiving the flows of the RoomHeating subsys-
tem. The connections between CT and DE models show the interface that is managed
during the co-simulation. Specifically, the Room Air Temperature (RAT ) from the CT
system is communicated to the controller, which sets the fan speed fanSpeed and the valve
open state valveOpen used by the Room component model r, with the aim of achieving the
Room Air Temperature Set Point RATSP provided by the user in the Environment.

Figure 24: SysML Connection Diagram using INTO-CPS profile corresponding to baseline
models
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4.4 Multi-model

4.4.1 Models

This pilot comprises two 20-sim models: RoomHeating and the Environment; an Open-
Modelica RoomHeating_OM model; and a Controller VDM-RT model.

RoomHeating.emx Figure 25 shows the RoomHeating subsystem with blocks for the
room and the wall. The model takes inputs for the required room temperature,
outside air temperature, fan speed and valve control. The model outputs the current
room air temperature.

Figure 25: RoomHeating model

RoomHeating_OM.mo The OpenModelica version of the RoomHeating subsystem is
similar to that of the 20-sim version – it also comprises blocks for the room and
wall, with the same interface. The block diagram is shown in Figure 26.

Figure 26: RoomHeating model

Environment.emx The Environment model, in Figure 27, provides data on the en-
vironment outside air temperature and scenario data based on change of room
temperature set point.

ControllerFCU The VDM controller model comprises a Sensor class, which provides
access to the current room temperature, and a LimitedActuator class, which pro-
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Figure 27: Environment model

vides output for the valveOpen and fanSpeed values. The actuator is limited such
that values fall only between the real values 1.0 and 0.0000001.

4.4.2 Configuration

The multi-model comprises three FMUs and five connections. The FMUs – FCUController.fmu,
RoomHeating.fmu and Environment.fmu – are exported from the VDM-RT and 20-sim
models.

The connections are as follows:

• from the EnvironmentFMUs RAT_OUT port to the ControllerFMU RATSP port;

• from the EnvironmentFMUs OAT_OUT port to the RoomHeatingFMU OAT port;

• from the ControllerFMUs valveOpen port to the RoomHeatingFMU valveopen
port;

• from the ControllerFMUs fanSpeed port to the RoomHeatingFMU fanspeed port;
and

• from the RoomHeatingFMU RAT port to the ControllerFMUs RAT port.

There are three parameters to set: lambdaWall and rhoWall which define the Wall ther-
mal conductivity and density respectively, and controllerFrequency, which defines the
frequency of the Controller. The standard parameters for these are 1.1192, 1312 and
1000000000 respectively. These may be adjusted for the purposes of DSE.

4.5 Co-simulation

Co-simulation of the full scenario (outside air temperature and room set point) has a
duration of 6800 seconds. Running the two multi-models produces the same results. The
results as displayed in the INTO-CPS application are shown in Figure 28, and values of
note sent between FMUs are shown separately in Figure 29.

The results in Figure 29 show that the set point (top left) is toggled between 20 and 0,
with the fan (and valve) are adjusted to achieve the set point. The bottom right graph
shows the ultimate result of the simulation – that the Room Air Temperature (RAT)
meets the set point, maintains that temperature whilst required and then slowly drop in
temperature until the set point returns to 20.
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Figure 28: Co-simulation results as shown in lNTO-CPS application live stream

Figure 29: Co-simulation results as shown in graphs from result log files

As mentioned in Section 4.4.2, the lambda_Wall, rhoWall and controllerFrequency design
parameters may be altered to test different wall properties and their effect on the overall
CPS.

30



Examples Compendium (Public)

4.6 Analyses and Experiments

4.6.1 Design Space Exploration

Detailed in Section 4.4.2, the multi-model has three design parameters, lambda_Wall,
rhoWall and controllerFrequency which define the wall thermal conductivity, wall density
and controller frequency respectively, which may be altered to perform DSE.

This example has 2 DSE experiments:

fcu-walls: The parameter values for lambda_Wall ranges from 0.1192 to 10.1192 in
intervals of 0.25, and the rhoWall value may be either 1312.0 or 1400.0. In this
experiment a wide range of lambda_Wall values (40 in total) provides a 80-model
design space – no constraints are defined. Two objectives are defined, using internal
DSE functions, energyConsumed and averageTemperature. The first objective is
to retrieve the maximum energy usage value, this is essentially the final value of
the energy port. The second is to return the mean RAT – that is the average
temperature of the RAT, which shows how the room heats and cools over time
depending upon the different wall values.

The Pareto ranking seeks to maximise the average temperature and minimise the
energy consumed. Figure 30 shows that there is one experiment at rank 1 (the
green dot), which indicates that (as is intuitive) the best design is that with the
lowest thermal conductivity and greater density.

fcu-walls-controller: The second experiment varies the lambda_Wall and rhoWall as
earlier, but with a different collection of values: lambda_Wall ranges from 0.1192
to 10.1192 in intervals of 1.0, and the rhoWall value ranging from 1300.0 to 1700.0
in intervals of 1000.0. In addition, the controllerFrequency parameter is varied
between 800000000 and 1200000000 in intervals of 100000000. A space of 250
designs is defined. The same objectives and rankings are used as the above DSE
experiment.

Figure 31 shows that there are five experiments at rank 1 (the green dots), which
indicates that (as is intuitive) the best design is that with the lowest thermal con-
ductivity and greater density, with the controller frequency providing only marginal
impact. It is interesting to note that the frequency does have an impact on both
the energyConsumed and averageTemperature objectives.

4.6.2 Test Automation and Model Checking

In this pilot study, test automation is applied to the system, including not only the
discrete FCU controller but also the continuous room and wall. A test model in SysML
models both discrete and continuous parts together. Accordingly, we developed two SUT
implementations that have different scope. The first SUT has a controller implemented in
C, and uses two 20-Sim models for the Room and the Wall separately. While the second
SUT has all (the Controller, Wall and Room) implemented in C in the same program.
With the two SUTs and an additional SUT called Simulation that is automatically
generated from the test model in RT-Tester, we can construct three test automation
configurations. And each configuration corresponds to one SUT.

Subsequently, we present the test model in SysML, then the two SUT implementations,
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Figure 30: DSE results for fcu-walls experiment

and finally test results for three different configurations.

Test Model The developed test model consists of a Controller, a Room model, and a
Wall model. We use the Euler method to model continuous parts Wall and Room.

Similar to the test model for Three-tank Water Tank in Section 3.6.2, the SysML model
consists a SUT and a TE. They are represented by the blocks SystemUnderTest and
TestEnvironment. Both of them have two ports with Observables and Stimuli interfaces
respectively. From the SUT perspective, the port of Observables is an output port, and
the port of Stimuli is an input port. However, their corresponding ports in the TE are
in the opposite direction. For brevity, we omit the ASD and CD diagrams of the System
in this document.

32



Examples Compendium (Public)

Figure 31: DSE results for fcu-walls-controller experiment

Inputs and Outputs The SystemUnderTest receives the following inputs (stimuli)
from the TestEnvironment :

• OAT : Outside Air Temperature;

• RATSP : Room Air Temperature Set Point.

The SystemUnderTest provides the following observable outputs to the TestEnviron-
ment :

• RAT_out: Room Air Temperature.

SystemUnderTest The SystemUnderTest consists of a FCU controller, a wall model,
and a room model.
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The architecture structure diagram of SystemUnderTest is shown in Figure 32.

Figure 32: Architecture Structure Diagram of SUT

FCU Controller The fcuCTRL receives the following inputs (stimuli):

• RAT_out: Room Air Temperature from the Room;

• RATSP : Room Air Temperature Set Point from the TestEnvironment.

The fcuCTRL provides the following outputs to the Room:

• fanSpeed: Fan Speed;

• valveOpen: Valve Open State.

The state machine diagram of the fcuCTRL is illustrated in Figure 33.

Figure 33: State Machine Diagram of fcuCTRL

In the diagram,
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• Setup is used to initialize constant variables;

• After Setup, the state machine resides in the Waiting state, most of the time;

• Then every second, it starts to calculate PID parameters again:

– At first, the inputs RAT and RATSP are copied to local variables to make
sure all subsequent computations refer to same values of RAT and RATSP ;

– Then, uP , uD, uI, and other local variables are computed for future use,

– Next, the summation of uP , uD, and uI is calculated and assigned to control,

– Finally, we limit control and assign it to fanSpeed and valveSpeed respec-
tively in the transitions from PostUpdate to Waiting.

Wall The Wall receives the following inputs (stimuli):

• RAT_out: Room Air Temperature from the Room;

• OAT : Outside Air Temperature from the TestEnvironment.

And the Wall provides the following outputs to Room:

• Tisurf : Wall Internal Surface Temperature.

The state machine diagram of the Wall is illustrated in Figure 34.

Figure 34: State Machine Diagram of Wall

In the diagram,

• Setup is used to initialize constant variables;
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• After Setup, we calculate the constants R and C, and initialize Tisurf and Tosurf
in PreCalc according to other constants that are initialized in Setup.

• Then the state machine resides in the Waiting state, most of the time. And every
second, it starts to calculate and update Tisurf and Tosurf again:

– The derivatives of Tisurf and Tosurf are calculated in derivativeUpdate,

– Then, they are used in PostUpdate to update Tisurf and Tosurf according
to the Euler Methods.

Room The Room receives the following inputs (stimuli):

• fanSpeed: Fan Speed from the fcuCTRL;

• valveOpen: Valve Open State from the fcuCTRL;

• Tisurf : Wall Internal Surface Temperature from the Wall.

The Room provides the following outputs to the fcuCTRL and TestEnvironment :

• RAT_out: Room Air Temperature.

The state machine diagram of the Room is illustrated in Figure 35.

In the diagram,

• Similarly, Setup is used to initialize constant variables;

• After Setup, we set RAT_out to RATinit in PreCalc.

• Then the state machine resides in the Waiting state, most of the time. And every
second, it starts to calculate and update RAT_out:

– Validality of the inputs fanSpeed and valveOpen are checked at first,

– Then, the derivatives of Qin (heat transferred to the air in the coil) and Qout
(heat lost through room and walls) are calculated,

– Subsequently, the derivative of RAT is calculated, and intermediate SAT (sup-
ply air temperature) and EWT (entering water temperature) are updated as
well.

– In the end, the output RAT_out is updated by the Euler method.

Test Input Simulation The automatically generated test cases from a test model
using RTT-MBT in RT-Tester is hardly realistic for a real life scenario. In order to provide
reasonable inputs to Co-simulation, we use a real input sequence for OAT and RATSP
in Multi-models. However, it is not possible for RTT-MBT to give this as input since
RTT-MBT uses a SMT solver to generate test cases, or uses a state machine to specify the
input sequence in TestEnvironment of the test model. We use the second way to specify
the input sequence by defining a state machine in a block TESim of TestEnvironment.
The diagram is shown in Figure 36. The specified sequence is shown as SUT_OAT
and SUT_RATSP in Figure 38. Basically, OAT changes slightly but RATSP vibrates
between 10 and 35 °C.
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Figure 35: State Machine Diagram of Room

Figure 36: State machine diagram of TESim
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Manual Implementations of SUT Two SUTs are implemented. The first one is a
SUT with the Controller in C, and then reuses the Wall and Room models in 20-Sim
or Modelica. And the second one is a standalone C program which has all three parts
together. By using a Python script named “build-suts.py”, we can build, assemble, and
wrap them into FMUs in RT-Tester automatically. The corresponding FMU for the
first implementation is named SUT_FCU_Ctrl.fmu while that of the second one is named
SUT.fmu.

Test Results Three test configurations are provided for test automation.

SIM TP (a test procedure in RT-Tester that provides test inputs and checks expected
results) against Simulation (a SUT created from the test model),

SUT TP against SUT.fmu (a SUT having all in the same program and FMU),

SUT_RoomWall TP against SUT_FCU_Ctrl.fmu and RoomHeating.FMU (a FMU from
20-Sim), therefore three FMUs altogether.

We use user defined test cases by LTL formulas in RT-Tester to define a test goal that
simulation time is at least 2000 seconds long as shown in Figure 37. In the test goal
configuration, TESim is activated to simulate the test input sequence as specified in its
state machine chart. Then the solver will generate a test data generation report that
includes test goals, implicitly covered test coverage cases, signal configurations, and test
stimulations and expected behaviour. This test covers all basic control state coverage
test cases (25), 45 basic control state pairs coverage test cases in 242, 1 MCDC coverage
test case in 3, and 11 transition coverage test cases in 12.

Figure 37: Test Goal Configuration of FCU

Our test results show all these implicitly covered test cases are with PASS or INCONCLUSIVE
verdicts. A comparison of test results for three test configurations with the same test
input sequence is displayed in Figure 38.

From the diagram, we can see that

• the change of set points will be reflected in the output RAT though there are delays
for the output to follow,

• the time to decrease temperature is longer than that to increase temperature,

• the fan speed is occasionally high, and most of time, the fan is inactive,

• the output RAT from SUT almost overlaps with that of SIM (because both of them
uses the Euler method for the Room and Wall),

• the output RAT from SUT_RoomWall is slightly different from those of SIM and SUT
(because the RoomHeating 20-Sim model uses the Runge Kutta 4 method).
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Figure 38: Test Results of Three Configurations

– For SUT_RoomWall, the room air temperature is changed faster than other two
configurations.

4.6.3 Code Generation

The VDM-RT model, FCUController can be exported from Overture as a C code FMU,
in addition to the tool wrapper FMU as used above. The FCUController-SourceCode.FMU
included in this pilot is obtained directly from Overture using the “Export Source Code
FMU” option. However, this FMU does not contain binaries for co-simulation and so one
may use the FMU Builder included in the INTO-CPS Application to compile FMUs for
Windows, Mac and Linux.

This process has been performed and the resultant FMU is included in the pilot in the
FMUs folder; FCUController-Standalone.FMU. One example experiment available is to
switch this FMU for the tool wrapper version – FCUController.FMU – and compare
results.
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5 Line-following Robot

5.1 Example Description

This example, originally developed in the DESTECS project and presented in [IPG+12].
The model simulates a robot that can follow a line painted on the ground. The line
contrasts from the background and the robot uses a number of sensors to detect light and
dark areas on the ground. The robot has two wheels, each powered by individual motors
to enable the robot to make controlled changes in direction. The number and position
of the sensors may be configured in the model. A controller takes input from the sensors
and encoders from the wheels to make outputs to the motors.

Figure 39 provides an overview of different aspects of the example: the real robot; an
example path the robot will follow; and a 3D representation in 20-sim.

The robot moves through a number of phases as it follows a line. At the start of each line
is a specific pattern that will be known in advance. Once a genuine line is detected on
the ground, the robot follows it until it detects that the end of the line has been reached,
when it should go to an idle state.

(a) A line-following robot (b) A line-follow path (c) 3D representation of the line-
following robot

Figure 39: The line-following robot

5.2 Usage

The example is available from the INTO-CPS application menu at File>Import Example
Project or at https://github.com/INTO-CPS-Association/example-line_follower_
robot in the master branch. There are several subfolders for the various elements: DSEs
- contains various work in progress DSE scripts to alter CT and DE parameters; FMU –
contains the various FMUs of the study; Models – contains the constituent models defined
using the INTO-CPS simulation technologies; Multi-models – contains the multi-model
definitions and co-simulation configurations – with 3D and non-3D options, and also with
and without the use of replicated FMUs; SysML – contains the SysML models defined
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for the study; resources – various images for the purposes of the readme file; and
userMetricScripts – contains files for DSE analysis.

The case-study_line_follower_robot folder can be opened in the INTO-CPS applica-
tion to run the various co-simulations as detailed in this document. To run a simulation,
expand one of the multi-models and click ‘Simulate’ for an experiment.

5.3 INTO SysML profile

Non replicated sensors

The multi-model architecture, defined in the INTO-CPS SysML profile, shows that the
Robot system is comprised of up to 5 components, as shown in the Architecture Struc-
ture Diagram in Figure 40. This comprises the following components: Body, Sensor1
and Sensor2 physical components, a Controller cyber component and a 3DVisualisation
visualisation component.

Figure 40: The line-following robot Architecture Structure Diagram

Two Connection Diagrams are defined. The first, in Figure 41, shows connections only
between the Controller, Body, Sensor1 and Sensor2 component instances. Broadly speak-
ing: the Controller receives sensor readings from both Sensor1 and Sensor2 components;
the Controller in turn sends servo commands to the Body component; and finally the
Body sends the robot position to both sensor components.

Figure 42 shows the alternative CD in which the 3DVisualisation component is used. In
this diagram, the 3DVisualisation component receives data from the Body on the robot
position, and the sensor readings from the two sensors. Unlike other examples using the
visualisation component type, no additional internal data is required to be exposed by
the existing components.

Replicated sensors

An alternative architecture has also been defined in which we use replication offered by
20-sim and OpenModelica FMUs. The ASD in Figure 43 demonstrates the use of two
instances of the same Sensor component type.

The CDs for this SysML model are similar to the non-replicated sensor model. The only
difference is the change of sensor types for the two sensor instances – this is shown in
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Figure 41: The line-following robot Connections Diagram

Figure 42: The line-following robot Connections Diagram

Figures 44 and 45.

5.4 Multi-model

5.4.1 Models

Based upon the two SysML models, we define four different simulation models: a 20-sim
Body model; a VDM-RT Controller model; a 20-sim Sensor models; and one OpenMod-
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Figure 43: The line-following robot Architecture Structure Diagram with replicated sen-
sors

Figure 44: The line-following robot Connections Diagram

ellica Sensor model.

Body To define the 20-sim Body subsystem, Figure 46, we first define a top-level de-
composition with a Body_Block and a block to represent the body’s Environment.

Decomposing the Body_Block further, the 20-sim model is defined as in Figure 47.
Blocks are defined for servos, encoders, wheels, the battery and the body itself. A
collection of input and output ports are defined: ports to output the robot position
(robot_x, robot_y, robot_z and robot_theta); ports to output wheel rotation values
(wheel_left_rotation and wheel_right_rotation); a port to output the battery usage
(total_energy_used); and ports for inputting servo power values (servo_left_input
and servo_right_input).

20-sim_Sensor The Sensor_Block is shown in Figure 48. For the non-replicated ver-
sion, we change the names of the Sensor_Block to generate different FMUs.
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Figure 45: The line-following robot Connections Diagram

Figure 46: Top-level 20-sim model of the line-following robot Body

Decomposing the Sensor_Block, we see the internal elements of the sensor – shown
in Figure 49. The sensor receives the robot position from its environment, calcu-
lating its position in the world using the line_follow_x and line_follow_y design
parameters. This position information is passed to the map block, which takes a
sample of values and passes a raw reading back to the sensors. The sensors then
convert this to an 8-bit value, taking into account realistic behaviours: ambient
light levels, a delayed response to changes, and A/D conversion noise. The final
sensor reading is output on the lf_1_sensor_reading port.

OM_Sensor The OpenModelica version of the sensor is provided in the LineFollower
package. The SensorBlock1.mo element, shown in Figure 50 corresponds to the
20-sim model shown in Figure 49. The model has the same interface, with internal
elements for reflectivity, ambient light, and A/D conversion noise.

Controller The VDM-RT controller model is conceptually unchanged from the original
Crescendo controller. The architecture of this model is in Figure 51. The Controller
model comprises a System class which contains a HardwareInterface instance which
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Figure 47: 20-sim model of the line-following robot Body

Figure 48: Top-level 20-sim model of the line-following robot Sensor

contains references to the inputs, outputs and design parameters. The System class
also contains a Controller class which makes the control decisions. The decisions are
based upon sensor readings obtained from two instances of the RobotSensor class,
and decisions are sent to the two RobotServo instances. In this model, a simple
algorithm is used: when both sensors see a black line the robot moves forward
(both servos are set to the same value), when only the right sensor sees the black
line the robot moves left – and vice-versa.

5.4.2 Configuration

There are several connections between the models in the multi-model.
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Figure 49: 20-sim model of the line-following robot Sensor

(a) Top-level view (b) Low-level view

Figure 50: OpenModelica model of the line-following robot Sensor

The first collection of connections is between the Body 20-sim model and the Controller
VDM-RT model. In this collection, there are two connections corresponding to signals
for the actuators that power the motors for the wheels:

• from the Controller servoLeftVal variable of type real to the servo_left_input
port of the Body ; and

• from the Controller servoRightVal variable of type real to the servo_right_input
port of the Body.

The second collection of connections is between the Sensor models and the Controller
VDM-RT model. For each sensor there is one connection to the controller to represent
inputs from line-following sensors that can detect areas of light and dark on the ground.
Therefore for a two-sensor model there are two connections:
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Figure 51: UML representation of line-following robot Controller model

• from the Sensor1 8 lf_1_sensor_reading port to the Controller lfLeftVal vari-
able; and

• from the Sensor2 9 lf_1_sensor_reading port to the Controller lfRightVal vari-
able.

A third collection of connections exist between the body and the sensors related to the
robot position:

• from the Body robot_x port to the Sensor robot_x port;

• from the Body robot_y port to the Sensor robot_y port;

• from the Body robot_z port to the Sensor robot_z port; and

• from the Body robot_theta port to the Sensor robot_theta port.

A collection of multi-models is provided in the study for combinations of 20-sim and
OpenModelica models.

Several shared design parameters are present also: the separation of the line-following
sensors from the centre line, in metres (line_follow_x ); and the distance forward of
the line-following sensors from the centre of the robot, in metres (line_follow_y). In
addition, design parameters are set for the controller: the forwardSpeed and values for
rotation – forwardRotate and backwardRotate.

5.5 Co-simulation

For all these multi-models, co-simulations require approximately 25-30 seconds of sim-
ulation to traverse the full map, using a fixed step size of 0.01 seconds. The example
has co-simulation set ups for each multi-model and the non-3D models have live stream
enabled for the sensed values from sensor1 and sensor2.

8Sensor1 is an instance of either the non-replicated Sensor_Block1 or the replicated Sensor_Block
9Sensor2 is an instance of either the non-replicated Sensor_Block2 or the replicated Sensor_Block
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5.6 Analyses and Experiments

Below we detail some useful experiments to demonstrate features of the INTO-CPS tool
chain.

5.6.1 Change FMUs/parameters

The case study has several Sensor FMUs. In the multi-model configuration it is possible
to swap the FMU allocated to each sensor instance of the multi-model. We can therefore
compare the results of co-simulation using a combination of 20-sim sensors (the replicated
Sensor_Block.fmu, or Sensor_Block1.fmu and Sensor_Block2.fmu) and OpenModelica
sensors (replicated, or some combination of LineFollower_Examples_SensorBlock1.fmu
and LineFollower_Examples_SensorBlock2.fmu).

In addition, there are parameters defined for the two sensors (an x and y position
lf_position_x and lf_position_y), and of the controller (forward and rotational speeds
forwardSpeed, forwardRotate and backwardRotate). Experiments may be carried out by
defining different values for these to model different placement of the sensors on the robot
and altering the robot speeds,.

5.6.2 Simulations due to previous results

Simulations can be replayed using different design parameter values to change the position
of the robot sensors. Changing these parameters amounts to changing the design of the
robot - some value pairs will produce robots which perform in some way better (e.g. have
a faster lap time) and others will result in robots which cannot follow the line.

5.6.3 Design Space Exploration

Several Design Space Exploration experiments have been included in this pilot. They are
described in more detail in Deliverable D5.3e [Gam17], and we give an overview of the
different experiments here.

lfr-2sensorPositions: This experiment uses four design parameters, but only varies one.
The lf_position_y of sensor1 may be either 0.07 or 0.13. Four objective scripts
are used: meanSpeed, lapTime, maxCrossTrackError and meanCrossTrackError.
The Pareto ranking only uses the lapTime and meanCrossTrackError objectives;
these determine the time taken for the robot to perform one lap of the map, and
also the mean error the robot makes when following the line.

lfr-8controllerValues: This experiment uses and varies three parameters. These pa-
rameters are all on the cyber-side of the multi-model – effecting the robot speeds set
by the controller. For each (forwardSpeed, forwardRotate and backwardRotate),
two possible values are defined - giving a design space of 8 designs. The same four
objective scripts are used as above with the same Pareto ranking.

lfr-16sensorPositionsConstrained: This experiment is a more complex version of the
lfr-2sensorPositions experiment in that it varies all four design parameters –
the lf_position_x and lf_position_y coordinates of both sensor1 and sensor2.
Two possible values are defined for each parameter – giving a 16-design space. A
constraint is defined for the parameters, which limits this design space to include
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only those designs which have the same y coordinate and the same absolute x
coordinate. The same four objective scripts are used as above with the same Pareto
ranking.

lfr-216controllerValues: This expands the lfr-8controllerValues experiment, pro-
viding 6 speed values for the Controller parameters (forwardSpeed, forwardRotate
and backwardRotate), producing a design space of 216 designs. The same four ob-
jective scripts are used as above with the same Pareto ranking.

lfr-2187ControllerAndSensors: The final experiment combines DSE on both DE and
CT models. Providing an insight into the possibility to trade-off between de-
velopment effort on the cyber or physical side. In this experiment there are 3
possible positions for each of the the lf_position_x and lf_position_y coordi-
nates of both sensor1 and sensor2, and also 3 values for the Controller parameters
(forwardSpeed, forwardRotate and backwardRotate). This produces a design
space of 2187 designs. The same four objective scripts are used as above with the
same Pareto ranking.

5.6.4 Test Automation and Model Checking

In this pilot study, we apply test automation only to the controller, instead of the system
in the FCU study. The continuous body and sensors are rather complex in order to be
modelled in a test model in SysML in Modelio by state machine diagrams. Therefore,
only the discrete part Controller will be tested. In addition, the Controller is a simplified
version which is similar to the VDM model in LFRController.fmu. In this model, the
parameters forwardSpeed, forwardRotate and backwardRotate are fixed to 4.0, 5.0 and
1.0 respectively. We implement a SUT manually in C. Then model checking is applied to
check a couple of properties of the test model, and finally test automation to test whether
the SUT is a correct implementation of the test model.

Test Model The overall architecture and connection diagrams of this test model are
omitted for brevity. The SystemUnderTest includes only one block LFR_CTRL.

Inputs and Outputs The SystemUnderTest receives the following inputs (stimuli)
from the TestEnvironment :

• sensorLeftV al

• sensorRightV al

The SystemUnderTest provides the following observable outputs to the TestEnviron-
ment :

• servoLeft

• servoRight

Constant Variables and Local Variables Preliminarily, we intend to define three
constant variables forwardSpeed, forwardRotate and backwardRotate of which the
access model property is set as Read. Then in the state machine diagram of LFR_CTRL,
we use these variables to refer to constants. However, these constant variables are not
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supported in RT-Tester. Their initial values are all set to 0 when parsing the test model.
Alternatively, we can initialise them to constants in the first state just after the Init state,
or just use hard-coded constants in the test model (the way used in this study).

Another two local variables preServoLeft and preServoRight are declared to store pre-
viously output values of servoLeft and servoRight separately. And their access model
property is set to Read/Write.

State Machine Diagram The state machine diagram of FCU_CTRL is given in Fig-
ure 52. It is worth noting that

• This model is based on a very basic variation of the controller and it only provides
four possible outputs.

• The texts in blue actually are not a part of the model and they are annotations
only to illustrate associated expression for each guarded transition (because the
expressions cannot be seen from the diagram directly).

• When both sensorLeftV al and sensorRightV al are larger than or equal to 150,
our model outputs the previously stored preServoLeft and preServoRight. It
means the outputs have not changed.

Figure 52: State Machine Diagram of LFR Controller

A Manual Implementation of SUT in C The source code is listed as follows.
#include <stdio.h>
#include <sys/time.h>
#include <sys/types.h>
#include "lfr_ctrl.h"

#define FORWARDSPEED 4.0f
#define FORWARDROTATE 5.0f
#define BACKWARDROTATE 1.0f

#define SENSORVAL 150.0f

#define _ms( t ) ( (t) * 1000 )
float preServoRight = 0;
float preServoLeft = 0;

50



Examples Compendium (Public)

VSTimer_t t;

void reset( VSTimer_t* timer)
{

struct timeval now;
ti_gettimeofday( &now , NULL );
*timer = now.tv_sec * 1000000 + now.tv_usec;

}

BOOLEAN elapsed( VSTimer_t* timer , long usec )
{

struct timeval now;
long long usec_now;

ti_gettimeofday( &now , NULL );
usec_now = now.tv_sec * 1000000 + now.tv_usec;
return ( ( usec_now - (*timer) ) >= usec );

}

int firstCall = 1;

/** Initialize SUT */
void sut_init ()
{

preServoLeft = 0;
preServoRight = 0;
reset(&t);

}

/** Run SUT (one step) */
void sut_run(float sensorLeftVal , float sensorRightVal ,

float* servoLeft , float* servoRight)
{

if(firstCall)
{

if(! elapsed (&t, _ms (1002)))
{

*servoRight = preServoRight;
*servoLeft = preServoLeft;
return;

}
}
else
{

if(! elapsed (&t, _ms (1000)))
{

*servoRight = preServoRight;
*servoLeft = preServoLeft;
return;

}
}

firstCall = 0;
reset(&t);

if(sensorLeftVal < SENSORVAL)
{

if(sensorRightVal < SENSORVAL)
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{
preServoRight = *servoRight = -FORWARDSPEED;
preServoLeft = *servoLeft = FORWARDSPEED;

}
else //if(sensorRightVal >= SENSORVAL)
{

preServoRight = *servoRight = -BACKWARDROTATE;
preServoLeft = *servoLeft = FORWARDROTATE;

}
}
else // if(sensorLeftVal >= SENSORVAL)
{

if(sensorRightVal < SENSORVAL)
{

preServoRight = *servoRight = -FORWARDROTATE;
preServoLeft = *servoLeft = BACKWARDROTATE;

}
else // if(sensorRightVal >= SENSORVAL)
{

*servoRight = preServoRight;
*servoLeft = preServoLeft;

}
}

return;
}

We define the reset and elapsed functions to reset the time variable t and check where
the specified time has elapsed or not. The controller is mainly idle (it could not process
inputs but just return previously stored outputs). But every one second, it starts to
process inputs and return corresponding outputs. It is worth noting that in the first call
of the sut_run, we have additional two ms delay. The reason is given later.

Model Checking Model checking can be applied to the test model to check if it satisfies
the properties. In order to use bounded model checking in the INTO-CPS app, we set
the bounded steps “BMC steps” to 50. The properties below are checked to hold in 50
steps.

P0 Livelock property by the Check Mode function on RT-Tester.

Check static model semantics ...done.
- IMR.SystemUnderTest.lfrCTRL... [PASS]
- IMR.TestEnvironment... [PASS]

=================================================================
| Livelock report |
=================================================================
IMR.SystemUnderTest.lfrCTRL.................................[PASS]
IMR.TestEnvironment.........................................[PASS]

P1 Check all outputs are always within their valid range.

Globally

([
−5 ≤ IMR.servoLeft ∧ IMR.servoLeft ≤ 5∧
−5 ≤ IMR.servoRight ∧ IMR.servoRight ≤ 5

])
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P2 The value of servoLeft is always larger than or equal to 0 but that of servoRight is
always less than or equal to 0.

Globally

(
[_timeT ick == 0]∨
[_timeT ick > 0 ∧ IMR.servoLeft ≥ 0 ∧ IMR.servoRight ≤ 0]

)

P3 If we use constant variables rather than hard-coded constants, we can check they will
never be changed.

Globally

(
[_timeT ick == 0]∨
[_timeT ick > 0 ∧ forwardSpeed == 4.0]

)

Test Results

User Defined Test Cases We use user defined test cases by LTL formulas in RT-
Tester to define a test goal that all combinations of inputs shall be covered. This goal is
illustrated in Figure 53. Then the solver will generate a test data generation report that
includes test goals, explicitly and implicitly covered test coverage cases, signal configu-
rations, and test stimulations and expected behaviour. This test covers all basic control
state coverage test cases (3), all transition coverage test cases (5), and 4 MCDC coverage
test cases in 12. The generated test input sequence is shown in Figure 54.

Figure 53: Test Goal Configuration of LFR

Figure 54: Test Input Sequence of LFR
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Firstly, the test result of TP against Simulation is displayed in Figure 55. All test cases
should be PASS or INCONCLUSIVE because both TP and Simulation are test procedures
generated from the exactly same test mode. However, three FAILs are seen from the
figure. This is because there is a very small delay in arrival time of inputs between TP
and Simulation. For instance, sensorLeftV al is changed to 150 from 0 at 2000 ms (as
shown in Figure 54) which is the time for TP to output it to Simulation as well as check
of expected behaviour. But the actual time when Simulation gets the latest value 150
would be later (provided the Co-Simulation step is 1ms, and then there is 1ms delay).
Finally, at 2000 ms, TP uses 150 to calculate the expected behaviour but Simulation still
uses the old value 0 for sensorLeftV al to give its output, which leads to mismatch of
actual outputs with expected outputs.

Figure 55: Test Case Summary (TP vs. SIM)

In order to correct it, we can put additional 2 ms offset manually in SUT. It is shown in
the source code. Eventually, the test result of TP against SUT is displayed in Figure 56 in
which all test cases are PASS or INCONCLUSIVE.

Figure 56: Test Case Summary (TP vs. SUT)

5.6.5 Code Generation

The VDM-RT model, LFRController, can be exported from Overture as a C code FMU,
in addition to the tool wrapper FMU as used above. The LFRController-SourceCode.fmu
included in this pilot is obtained directly from Overture using the “Export Source Code
FMU” option. However, this FMU does not contain binaries for co-simulation and so one
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may use the FMU Builder included in the INTO-CPS Application to compile FMUs for
Windows, Mac and Linux.

This process has been performed and the resultant FMU is included in the pilot in
the FMUs folder; LFRController-Standalone.fmu. One example experiment available is
to switch this FMU for the tool wrapper version – LFRController.fmu – and compare
results.
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6 Turn Indicator

6.1 Example Description

The turn indicator model discussed here is an adaption of a model originally designed with
an industrial partner from the automotive domain10. The model specifies the behaviour
of a turn indication controller, which essentially supports left and right flashing as well
as emergency flashing. The functionality is modelled using three inputs (the voltage, the
control lever and the emergency flash button) and two outputs (the states of the left and
right turn indication lights, respectively). The model can then be used to automatically
generate test cases for a system that shall implement the specified behaviour. In addition,
desired safety properties of the system can also be verified using model checking. Both
these activities are performed using the RT-Tester Model-Based Test Case Generator
(RTT-MBT) [Ver15] and are described in more detail in Deliverable D5.3a [GMB17] and
Deliverable D5.3c [BH17], respectively.

A key feature of this example is that it combines several features which are important for
effective modelling of system specifications using SysML state charts: It uses variables
of different types (voltage is real-valued, the other ones are integral), it uses hierarchical
state machines and concurrent components.

6.2 Usage

The example is available at https://github.com/INTO-CPS-Association/example-turn_
indication and can be downloaded as an example project directly from within the INTO-
CPS application. After that, the example can be used for test automation and model
checking activities.

In addition the VSI tools release bundle installs a pre-configured RT-Tester project in
the directory C:\Users\<USER>\RTT-Prj\turn-ind\. The sub-folder sut\ contains a
C implementation of the system under test. The associated FMU RTT\_TestProcedures\
SUT\TurnIndicationController_sut.fmu can be run in co-simulated test run against
a generated test driver.

6.3 SysML

The model has been developed in Modelio by means of hierarchic parallel state-charts.
Furthermore, architecture diagrams are used to structure components and ports, and
connections are used to express data flow between parallel components.

Figure 57 depicts the structure of the overall System which is decomposed in a SystemUnderTest
and a TestEnvironment component. The SystemUnderTest encompasses the desired be-
haviour of the system under test and has therefore been annotated with the SUT stereo-
type. The TestEnvironment represents the operational environment to the system under
test and is annotated with the TE stereotype.

The system under test receives inputs from the environment and provides outputs. For
both of these, data flow interfaces specify the involved variables and have been associated

10The detailed model is described in [PVL11].
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Figure 57: Top-level architecture diagram of the turn indicator model.

with the stereotypes SUT2TE and TE2SUT, respectively. The system under test receives
the following inputs from the environment:

• TurnIndLvr: The position of the turn indicator lever, which can either be neutral,
left flashing, or right flashing.

• EmerSwitch: The on/off status of the emergency flashing switch.

• voltage: The voltage of the car’s battery.

The SystemUnderTest produces the following observable outputs:

• LampsLeft: The of/off status of the indication lights on the left side.

• LampsRight: The of/off status of the indication lights on the right side.

The connection diagram in Figure 58 connects the system under test with the test envi-
ronment using the described interfaces.

Figure 58: Top-level connection diagram of the turn indicator model.

Note, that the correct stereotype annotations of the components are important for test
case generation using RTT-MBT.

In this example, the TestEnvironment does not constrain the input variables in any way
(RTT-MBT automatically ensures that the values assigned during test case generation are
within the specified range). The relevant logic is thus implemented in SystemUnderTest,
which is divided into two hierarchical state charts called FLASH_CTRL and OUTPUT_CTRL as
expressed by the class diagram in Figure 59. The component FLASH_CTRL is responsible
for deciding whether the left or the right side has to flash depending on the turn-indicator
lever and the emergency switch. This general decision for the two sides is fed into the
OUTPUT_CTRL which is responsible for periodically turning the lights on and off. This data
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Figure 59: System under test architecture diagram of the turn indicator model.

flow between the two components is expressed by the connection diagram in Figure 60.

Figure 60: System under test connection diagram of the turn indicator model.

The FLASH_CTRL state machine in Figure 61 controls the impact of operating the turn
indicator and emergency flashing switch. If the emergency switch is not pressed, the
state machine simply enables flashing on a specific side if the turn indicator lever is
in the respective position. If the emergency switch is pressed, the composite state in

Figure 61: The FLASH_CTRL state machine.

Figure 62 decides whether both sides should flash. Observe, that using the turn indicator
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lever while the emergency switch is pressed can override emergency flashing. The lamps
resume flashing on both sides when the turn indicator level is returned to the neutral
position.

Figure 62: The EMER_ON composite state in the FLASH_CTRL state machine.

OUTPUT_CTRL depicted in Figure 63 implements two modes for setting the outputs. It
can be in either idle or flashing mode, where the flashing mode itself is implemented as
composite state that can switch from off to on and vice versa. It does so in a regular
interval if the system has enough power and a lever or the emergency button has been
used. The state machine also implements a counter that ensures that left or right flashing
is still flashing for three times if the turn indicator level is only operated for a short
duration.

Observe that certain states and transitions in the model have been annotated with require-
ments. For example, the transition from state TURN_IND_OVERRIDE→ EMER_ACTIVE in
Figure 62 has been linked to requirement REQ-007 via a satisfy relation. Likewise, state
TURN_IND_OVERRIDE has been linked to requirement REQ-006. Linking requirements in
that way specifies that the associated structural elements of the model help to realise the
given requirement.

Furthermore, some requirements are attached to classes in conjunction with an LTL
formula as can be seen in Figure 59. The LTL formula specifies an abstract execution
trace that could serve as a witness to demonstrate that the requirement is fulfilled by an
implementation.
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Figure 63: The OUTPUT_CTRL state machine.

6.4 Analyses and Experiments

6.4.1 Test Automation and Model Checking

As mentioned earlier, this pilot can be used to automatically generate test cases for a
system that shall implement the specified behaviour. In addition, desired safety prop-
erties of the system can also be verified using model checking. Both these activities are
performed using the RT-Tester Model-Based Test Case Generator (RTT-MBT) and are
described in more detail in Deliverable D5.3a [GMB17] and Deliverable D5.3c [BH17],
respectively.
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7 Unmanned Aerial Vehicle
This example is no longer maintained or updated. You are welcome to contact the
example owner in case of interest. See https://github.com/INTO-CPS-Association/
example-single_uav for contact details.

7.1 Example Description

This pilot study originates from a master thesis study presented in [GN16]. The study
models the physical dynamics as well as the discrete controller of an Unmanned Aerial
Vehicle (UAV). Focus on the details of the model contribute to a high model fidelity,
enabling the multi-model to be used to compare alternative control algorithms.

Figure 64 shows a 3D model of the UAV and some of its main components, including
the airframe, which is the main body the UAV, the propulsion system consisting of
rotors, motors, and electronic speed controllers, along with the battery and the
controller platform. Additionally, a UAV have a range of different sensors and a
telemetry system used to communicate with a pilot or a ground control center.

Motor

Rotor

ESC

Battery

Controller
Airframe

Figure 64: UAV 3D model

7.2 Usage

The example is available at https://github.com/INTO-CPS-Association/example-single_
uav in the master branch. There are several subfolders for the various elements: FMU –
contains the various FMUs of the study; Models – contains the constituent models defined
using the INTO-CPS simulation technologies; Multi-models – contains the multi-model
definitions and co-simulation configurations – with 3D and non-3D options; and SysML –
contains the SysML model defined for the study.

In the abstract_intocps branch, the original discrete event control model have been re-
placed with an abstract control model in order to enable high-level control prototyping. A
prototype of an autonomous vertical waypoint controller is exemplified. The same model
is found in the abstract_crescendo branch, where DESTECS technology is used instead of
INTO-CPS technology. This can be used to compare the two technologies [TN16].
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7.3 INTO-CPS SysML profile

The INTO-CPS SysML profile is used to create an Architecture Structure Diagram (ASD)
and a Connections Diagram (CD), shown in Figure 65 and Figure 66 respectively. The
ASD expresses that the system UAV is a composition of a cyber part ArduPilot, a physical
part ArduCopter, and an optional 3D animation.

ArduPilot is a discrete event controller described in VDM-RT. It takes a number of
sensor inputs and outputs a control signal for each of the four motors of the UAV. By
adjusting the motor setpoints, it is able to make the UAV fly to predefined waypoints,
taking into account feedback from sensors.

ArduCopter is a model of the physical dynamics of the UAV described in 20-sim. The
inputs to the ArduCopter model are the four motor setpoints. Based on these, it cal-
culates the angular position described with roll, pitch, and yaw angles, and the spatial
position described with a latitude, longitude, and altitude (X,Y,Z), and the velocities and
accelerations of the UAV. Additionally, corresponding sensor outputs are simulated for a
3-axis accelerometer, a 3-axis gyroscope and a GPS.

Angular and spatial positions are used by the 3D animation.

Figure 65: UAV Architecture Structure Diagram

The connection between the constituent models is a one-to-one mapping between ArduPilot
and ArduCopter, with the exception that the 3D animation is connected to ArduCopter
as well, as shown in Figure 66.
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Figure 66: UAV Connections Diagram
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7.4 Multi-model

7.4.1 Models

The system comprises a continuous-time (CT) model ArduCopter and a discrete event
(DE) model ArduPilot.

ArduCopter: The physical dynamics of the UAV is described in 20-sim. In Figure 67
an overview of the Quadcopter model is shown. It includes the rigid body dynamics
of the airframe, the aerodynamics of the rotors, the electronics and mechanics
of the motors and the electronic speed controllers, as well as sensor noise,
inaccuracies, and rounding errors.

Figure 67: 20-sim model of the UAV

ArduPilot: Figure 68 shows an overview of the ArduPilot model, which is described in
VDM-RT. The main class of the model ArduPilot starts a Scheduler and a Flight
controller. To improve model fidelity, sensor values are updated periodically by
the scheduler to emulate the real update frequencies of the various sensors. The
flight controller takes input from a pilot and from sensor data, on which sensor
fusion is performed, and is responsible for calculating desired accelerations for the
UAV. These accelerations are translated, by the Motors class, into motor setpoints
for each motor. The translation involves a complex tradeoff between roll, pitch, and
yaw accelerations and total thrust. The MotorsQuad class is shown to illustrate that
the Motors class can be extended to support any number or configuration of motors.

The Flight Control class contains the core functionality of the model and is prob-
ably also the most complex part. It can operate in multiple flight modes, which
make use of either an attitude controller or both an attitude and a position con-
troller. The attitude controller is capable of obtaining and maintaining any given
attitude, whereas the position controller is capable of controlling the altitude. Both
the attitude and position controllers depend on a number of low level controllers,
such as Proportional-Integral-Derivative (PID) controllers and a number of different
filters to remove unwanted noise and vibrations caused by the fast spinning rotors.
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Figure 68: ArduPilot model overview

7.4.2 Configuration

This pilot study does not use any parameters and the connections should be self explana-
tory from Figure 66.

7.5 Co-simulation

Two multi-models are defined for this pilot study. The only difference between the two
is whether the 3D animation is included or not.

Figure 69: 3D visualization of the UAV
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8 Ether

8.1 Example Description

This example explores ways to model network communications between controllers. This
involves passing messages —VDM values encoded as strings— from a model called Sender
to a model called Receiver. This is either done directly, as illustrated in Figure 70(a), or
via a third model called the Ether, as illustrated in Figure 70(b).

While this example demonstrates that direct connection is possible, for multi-models
with large numbers of connected controllers (for example swarms or cooperative vehicles)
it becomes unwieldy. This example includes an Ether model, which represents an ab-
stract communication mechanism, that handles message passing between the Sender and
Receiver. This Ether can be used in other models.

The introduction of a model of communications also permits a range of realistic and
faulty behaviours to be introduced, such as message delay, duplication, and loss. The
ether pattern which this example implements is described in greater detail in Deliverable
D3.3a [FGP17], and includes a discussion of realistic and faulty behaviour.

(a) Sender and Receiver con-
nected directly

(b) Sender and Receiver connected via the Ether

Figure 70: Topology of the ‘Direct’ and ‘Ether’ multi-models.

8.2 Usage

The example is available from the INTO-CPS application menu at File > Import Exam-
ple Project or at https://github.com/INTO-CPS-Association/example-ether in the
master branch. There are several subfolders for the various elements: FMU – contains the
various FMUs of the study; Models – contains the constituent models defined using the
INTO-CPS simulation technologies; Multi-models – contains the multi-model definitions
and co-simulation configurations – with Direct and Ether configurations.

The case-study_ether folder can be opened in the INTO-CPS application to run
various co-simulation experiments. To run a simulation, expand the emphDirect or em-
phEther models, then open the co-sim_direct or co-sim_ether experiments and click Sim-
ulate. Section 8.5 below gives some suggestions of how to explore the multi-model.

8.3 Multi-model

8.3.1 Models

There are three models in this example, all of which are DE models written in VDM:

Sender: This model has a single output port called out, of type String. The Controller
class generates random messages every 0.1 seconds, and passes them to the output
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port. Each message consists of three integers in the range (0,10), and are converted
to a string representation using the VDMUtil standard library. The time and content
of each message is printed to the console.

Receiver: This model has a single input port called iin, of type String. The Controller
class listens for messages on the input port and attempts to convert message strings
back to a VDM type representation using the VDMUtil standard library. Empty
strings are often received at the start of co-simulation, and these are ignored. If
conversion is successful, the time and content of the message is printed to the con-
sole.

Ether: This model represents an abstract communication medium. It has an input port
called sender and an output port called receiver, both of type String. The
Ether class passed strings from the sender port to the receiver port. Although
in this example only one message will be received at a time, in general there may
be multiple messages for the same destination during a single update, so the Ether
class collects messages in a list and passes on a string of strings that the destination
(i.e. in this case Receiver) must decode.

The connections in the Ether class are determined by the values passed to the
constructor, which is called in the System class. The constructor takes a map of
named input ports, a map of named output ports and a set of pairs indicating
which inputs are connected to which outputs. The Ether class does not examine
the value of the messages that it passes. This model can be reused in other multi-
models where message-based communications between models are required.

8.3.2 Configuration

There are two multi-model configurations included in the example:

Direct In this configuration, the Sender.out port is connected directly to the Receiver.in
port.

Ether In this configuration, the Sender.out port is connected to the Ether.sender
port and the Sender.reciever port is connected to the Receiver.in port.

These two different configurations allow exploration of the consequences of introducing
the Ether FMU. The Sender model does not need to know if it is connected to the Ether
or not. Since the Ether allows one-to-many communications, it passes lists of values, so
the Receiver must check whether it received a single value from the Sender directly, or
a list containing a single value via the Ether. This could be avoided in this example by
letting the Ether assume that there is only one connection, but would make the Ether
less general. The included implementation means that the Ether can be used directly in
other multi-models — only the HardwareInterface class and called to the constructor
of Ether would need to be changed for the context of the new model.

8.4 Co-simulation

The simulation time for the multi-model is set to one second, which is sufficient to see the
behaviour of the system. During this time, 10 messages are sent from the Sender. Not
all messages are received by the Receiver since at least one extra update cycle is needed
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to process the final message, or final two messages in the case of communication via the
Ether.

8.5 Analyses and Experiments

8.5.1 Sample Experiments

The following experiments are instructive in demonstrating the effects on introducing
the Ether and the effects of the relative speeds up the Sender, Ether and Receiver on
messages. All three FMUs print messages and times to the COE console.

1. Run the Direct co-simulation and observe that messages arrive at Receiver one step
(0.1 seconds) later. Run the Ether co-simulation and observe that messages arrive
two steps (0.2 seconds) later.

2. Change the frequency of the Ether to 20Hz or higher. Run the Ether co-simulation
and observe that messages arrive at Receiver one step (0.1 seconds) later. This is
because the Ether can now update in between steps of the Receiver.

3. Set the Ether back to 10Hz and change the frequency of the Sender to 20Hz or
higher. Run the Ether co-simulation and note how messages are not lost because
they are changed by the Sender before they are read by the Ether.

4. Set the Sender back to 10Hz and change the frequency of the Receiver to 20Hz or
higher. Run the Ether co-simulation and note how messages are now duplicated
because the Receiver is reading them twice or more.

If elimination of message loss or duplication is important in a multi-model, the descrip-
tion of the ether pattern in Deliverable D3.3a [FGP17] gives some initial guidance on
overcoming such problems by introducing extra logic to give quality of service (QoS)
guarantees in message-passing.

8.5.2 Test Automation and Model Checking

Our model for test automation is different from that for Multi-model and analysis in the
following aspects.

• Our test model aims for model network communications between multiple con-
trollers through an intermediate Ether. The Ether is regarded as a shared medium
between controllers to dispatch packages from multiple sources to multiple targets.
Therefore, we do not need all controllers connected to each other directly and the
direct connection mode between controllers is not taken into account in our test
model.

• Current Multi-model configurationEther includes only one Sender and one Receiver.
In order to be used as a communication medium in the UAV swarm pilot study in
Section 9, the Ether model should support more senders and receivers. Our test
model supports two controllers to be connected through the Ether, and each con-
troller is composed of a sender and a receiver to allow it to communicate with others
bidirectionally.

• For Co-Simulation, these controllers could be in different FMUs. Then the Ether
should provide the capability to dispatch packages from sources to destinations ac-
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cording to their targets. For instance, one central controller would send a command
to the controller one at a specific time, then later it would send another command
to the controller two. We introduce a new package structure (as shown in Sec-
tion 8.5.2) which is composed of an address part and a payload part. Therefore,
the Ether is able to dispatch packages by the addresses that are encoded in the
packages. In particular, it supports broadcast and unicast.

• The model for Multi-model and analysis has messages encoded in strings. But due
to the fact that RT-Tester is not able to parse string or array in test models, we are
not able to model variable-length strings in test models. The encoding mechanism in
Section 8.5.2 is an example to encode a string (up to 5 Base64 characters) into a 32-
bit integer. We allow different applications can have different encoding mechanisms.
As an example, the test model in the UAV swarm study uses three doubles for its
payload and each double means a position or velocity in one of three axes (X, Y
and Z). However, for this Ether pilot study, the test model will not look into the
inside of payloads and it just uses an integer for illustration.

Subsequently, we present the test model in SysML. Then model checking is applied to
check a number of properties of the test model. Finally a SUT is implemented manually
and test automation is applied to test whether the SUT is a correct implementation of
the test model.

Test Model [Ether mode] Our test model connected two controllers (or FMUs, here
we call it End) through a Ether. The interfaces between the TestEnvironment and the
SystemUnderTest are the packages that two Ends would send and receive.

String Encoding A package is composed of two parts: address and payload. Each of
them is encoded in one integer (32-bit).

• Address (32-bit integer): the high 24 bits are always 0, the low 8 bits are split into
two 4-bit parts (one for the destination port and one for the source port)

– 0xF: for broadcast;

– 0x1-0xE: port 1 - port 15;

– 0x0: no message signal (used for the polling method to identify a valid pack-
age).

• Payload (32-bit integer): the highest two bits are reserved, other 30 bits consist of
five 6-bit parts (each encodes a Base64 character)

– Base64: 64 characters (26 uppercase alphabet letters [A-Z], 26 lowercase al-
phabet letters [a-z], 10 digits [0-9], ’+’ and ’/’),

– up to five characters in a string.

Finally, it supports

• up to 15 incoming ports and 15 outgoing ports, and each FMU (or end) has a paired
incoming and outgoing ports,

• up to 15 FMUs connected,
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• the paired ports have the same and unique id,

• the destination address of an input pair can be its paired port (send a message to
itself),

• up to 5 characters in the payload of each package.

Inputs and Outputs Inputs and outputs of the test model are shown in Figure 71.

Figure 71: Input and Output Variables of Ether

The SystemUnderTest receives the following inputs (stimuli) from the TestEnvironment :

• in1a and in1p: address and payload of the incoming package in Ether from End 1,

• in2a and in2p: address and payload of the incoming package in Ether from End 2.

The SystemUnderTest provides the following observable outputs to the TestEnviron-
ment :

• out11a and out11p: address and payload of the first outgoing package in Ether to
End 1,

• out12a and out12p: address and payload of the second outgoing package in Ether
to End 1,

• out13a and out13p: address and payload of the third outgoing package in Ether to
End 1,
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• out21a and out21p: address and payload of the first outgoing package in Ether to
End 2,

• out22a and out22p: address and payload of the second outgoing package in Ether
to End 2,

• out23a and out23p: address and payload of the third outgoing package in Ether to
End 2.

Other Interfaces Other interfaces, as shown in Figure 72, are used in the SystemU-
nderTest for connections between the Ends and the Ether.

Figure 72: Other Interfaces of Ether

• InMsgIF and OutMsgIF : the incoming and outgoing interfaces between the End1
and the Ether,

• InMsgIF2 and OutMsgIF2: the incoming and outgoing interfaces between the
End2 and the Ether.

SystemUnderTest Architecture Diagram The system architecture diagram of the
SystemUnderTest is shown in Figure 73. It consists of two Ends : End1 and End2, and
one Ether.

SystemUnderTest Connection Diagram The connection diagram of the SystemU-
nderTest is illustrated in Fig 74. Both End1 and End2 are connected to the Ether, but
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Figure 73: Ether Architecture Diagram

they are not connected directly. Therefore, a package that is sent from the End1 to the
End2 would transmit to the Ether at first, then dispatch to the End2 by the Ether.

Figure 74: Ether Connection Diagram

End1 State Machine Diagram The behaviour of the End1 is specified in the state
machine diagram shown in Figure 75. It merely copies the input packages from the
TestEnvironment to the Ether and the output packages from the Ether to the TestEnvi-
ronment.

Figure 75: End1 State Machine Diagram

End2 State Machine Diagram Similarly, the state machine diagram of the End2 is
displayed in Figure 76.

Figure 76: End2 State Machine Diagram

Ether State Machine Diagram The behaviour of the Ether is specified in the state
machine diagram shown in Figur 77. Basically, it checks the incoming packages from
the End1 and the End2, and then dispatches them to their corresponding output ends
according to the address in each package.
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Figure 77: Ether State Machine Diagram

Test Input Simulation We use a state machine to specify the input sequence in the
TestEnvironment of the test model. The diagram is shown in Figure 78. This state
machine simulates all combinations of incoming packages from the End1 and End2 in
terms of package addresses.

Model Checking Model checking can be applied to the test model to check if it satisfies
several properties. In order to use bounded model checking in the INTO-CPS app, we
set the bounded steps “BMC steps” to 50. The properties below are checked to hold in
50 steps.

P0 Livelock property by the Check Mode function on RT-Tester.

Check static model semantics ...done.
- IMR.SystemUnderTest.End1I... [PASS]
- IMR.SystemUnderTest.End2I... [PASS]
- IMR.SystemUnderTest.EtherI... [PASS]
- IMR.TestEnvironment.tesimulator... [PASS]

P1 An End would never receive a package with a wrong destination address.

Globally ([IMR.out11a != 33] &&
[IMR.out11a != 34] &&
[IMR.out21a != 17] &&
[IMR.out21a != 18])

P2 All controllers could be in the Idle state at the same time.

Finally ([IMR.SystemUnderTest.End1I.End.Idle
&& IMR.SystemUnderTest.EtherI.Ether.Idle
&& IMR.SystemUnderTest.End2I.End.Idle])
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Figure 78: Test Input Simulation State Machine Diagram

P3 A broadcast package would never be received by its source port.

Globally ([IMR.out11a != 241] && [IMR.out21a != 242])

A Manual Implementation of SUT in C A SUT is implemented in C. And it is
finally built and wrapped into a SUT FMU.

Test Results

Test Goals Our test goals configuration is displayed in Figure 79. All basic control state
coverage test cases and transition coverage test cases for three controllers are included,
in the context of the TestEnvironment simulation enabled. In addition, a user defined
test case is presented to require the test lasting at least 1.5 seconds. The generated and
solved input signals for the test goals are shown in Figure 80 and Figure 81.

The input address signals for both End1 and End2 (where the payloads are excluded)
are marked and illustrated in Figure 82.

TP-00 vs. Simulation The TP-00 is a test procedure in RT-Tester that provides
test inputs and checks expected results, while Simulation is a SUT test procedure created
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Figure 79: Test Goals Configuration

Figure 80: Input Signals of End1

Figure 81: Input Signals of End2

from the same test model as the TP-00. Our test results show all these test cases are
with PASS or INCONCLUSIVE verdicts.
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Figure 82: Input Address Signals

TP-00 vs. SUT This is to test if our manually implemented SUT is a correct imple-
mentation of the test model or not. Our test results show all these test cases are with
PASS or INCONCLUSIVE verdicts. Corresponding to the inputs shown in Figure 80 and
Figure 81 as well as the marked input signals in Figure 82, the output signals for the
End1 and the End2 are illustrated in Figure 83 and Figure 84 respectively.

Figure 83: Output Signals of End1

Our test results show all these test cases are with PASS or INCONCLUSIVE verdicts. These
signals are described below with numbering.

• 1. Broadcast from End1 ([100ms, 200ms]),

– as shown in the outputs of End2 ([300, 400]),

– therefore, 200ms delay.

• 2. Broadcast from End2 ([200, 400]),

– as shown in the outputs of End1 ([400, 600]).
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Figure 84: Output Signals of End2

• 3. Broadcast from End1 ([300, 400]),

– as shown in the outputs of End2 ([500, 600]).

• 4. Unicast from End1 to End1 ([400, 600]),

– as shown in the output (out11a) of End1 ([600, 800]).

• 5. Broacast from End2 ([500, 600]),

– as shown in the output (out12a) of End1 ([700, 800]).

• 6. Unicast from End2 to End2 ([600, 800]),

– as shown in the output (out21a) of End2 ([800, 900]),

– and the output (out22a) of End2 ([900, 1000]).

• 7. Unicast from End1 to End2 ([700, . . . ]),

– as shown in the output (out21a) of End2 ([900, 1000]).

• 8. Unicast from End2 to End1 ([900, 1000]), . . .

These behaviours are expected in our test model.
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9 Swarm of UAV

9.1 Example Description

The Unmanned Aerial Vehicle (UAV) Swarm pilot study is concerned with a collection
of UAVs that communicate in order to achieve some global behaviour. The pilot study
is related to the previous UAV study in Section 7, however this does not focus on the
low-level physical details. The pilot uses a simplified physical model to allow simulation
of multiple UAVs simultaneously communicating.

In this pilot, each UAV is able to adjust its pitch, yaw and roll to move in 3D space using
rotors. Figure 85 shows a single UAV with its motors, rotors and battery – each UAV has a
controller which is able to communicate with its environment. In a swarm, the UAVs may
cooperate in order to avoid collide, to achieve some predefined topology, or collaborate to
provide some functionality. In this study, we demonstrate the use of a central controller
to dictate the desired movements of the UAVs comprising the swarm.

Figure 85: UAV 3D model

9.2 Usage

The example is available from the INTO-CPS application menu at File>Import Example
Project or at https://github.com/INTO-CPS-Association/example-uav_swarm in the
master branch. There are several subfolders for the various elements: FMU – contains the
various FMUs of the study; Models – contains the constituent models defined using the
INTO-CPS simulation technologies; Multi-models – contains the multi-model definitions
and co-simulation configurations – with 3D and non-3D options; and SysML – contains
the SysML model defined for the study.

The case-study_uav_swarm folder can be opened in the INTO-CPS application to run
various co-simulation experiments. To run a simulation, expand one of the multi-models
and click ‘Simulate’ for an experiment.

9.3 INTO-CPS SysML profile

Using the INTO-SysML profile, we model a subset of the pilot study. The reason for
modelling only a small subset will become clear in this section. In Figure 86, we show an
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Architecture Structure Diagram (ASD) depicting 3 UAVs – each comprised of a UAVCon-
troller component and a UAV component, a component for 3D visualisation UAV 3D,
and a UAV Global Controller component. Each component has a large number of inputs
and outputs. Briefly the UAV has inputs for setting the pitch, yaw, roll and throttle, and
outputs for the position, velocity and battery status. The UAV Controller has the same
ports, but with reversed direction and also ports to receive commands from the global
controller. The optional UAV 3D takes as input the position, pitch, yaw and roll of each
UAV. Finally, the UAV Global Controller has a collection of ports for target locations for
each UAV.

Figure 86: UAV Swarm Architecture Structure Diagram

Due to the large number of ports and connectors in this pilot, it is not appropriate to
represent them all on the same diagram. As such, we create a single Connections Dia-
gram (CD) per UAV each containing the same system instance (swarm : UAVSwarm).
Combining all CDs produces a complete configuration for that system instance. The
CD in Figure 87 depicts connections between the UAVController component and a UAV
component of UAV1, and the connections to the UAV 3D and UAV Global Controller
components related to UAV1. Note that the UAV 3D and UAV Global Controller in-
stances have a subset of their ports shown.

9.4 Multi-model

9.4.1 Models

There are three models defined here (we do not include a description of the UAV 3D
model.

UAV: The physical model – UAV is defined in 20-sim. The UAV model represents the
motors, rotors, battery and implicitly the frame of the UAV. The top-level structure
of the model is shown in Figure 88.
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Figure 87: UAV Swarm Connections Diagram showing connections relating to UAV1

Figure 88: 20-sim model for UAV taking part in a Swarm
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As can be seen from Figure 88, there are several input and output signal ports –
these correspond to those ports defined in the SysML model above – for setting
the pitch, yaw and roll and reporting various aspects for control and visualisation
purposes. The model is simplified and more abstract from that in Section 7, in that
it is better suited to modelling shallow pitch and roll angles and contains several
simplifications. The inputs from the controller enter the UAV model in two places
with the pitch, roll and yaw entering the RotationResponse block while the throttle
setting enters the quad block. This model of the UAV abstracts away the fact of
there being four distinct rotors and so a simplified model of their effects on the
orientation of the UAV, so instead of torques from the four rotors being applied to
the UAV body and the acceleration calculated, the RoationResponse considers the
difference between the current and requested pitch, roll and yaw rate an simulates
a damped transition from the current to the requested. The resulting orientations
are sent to the quad where they are combined with the throttle setting and battery
voltage to give thrust vectors along the vertical, front and side axis of UAV. These
vectors along with the UAV yaw are sent to the translationToXYZ where the thruse
vectors are mapped onto the X,Y and Z axis and drag, accelerations, velocities and
positions computed. The final two blocks BatteryModel and WirelessBatteryChar-
gin calculate the charge going into and out of the battery so that its working voltage
may be output to the quad model.

UAVController: The first of two VDM-RT models – UAVController – has a similar
architecture to other pilots (e.g. the line follower robot in Section 5), in that the
System has an instance of a HardwareInterface class containing ports for the inputs
and outputs of the model. The System class also has an instance of the Controller
class, which owns several instances which sense or make changes to the environment
– they are Actuators, Sensors and Commands. The controller has a collection of
operations that aim to control the movement of the underlying UAV – the top-
level control loop takes the commands from the environment with target locations.
Given the X, Y and Z coordinate the UAV should meet, the controller calculates
the throttle, yaw and roll to achieve the change form the current position to that
target. Those values are sent on the output ports.

Figure 89: UAV Controller architecture

GlobalUAVController: The global controller for the UAV Swarm study is a simple
model, which sends target locations to the different UAVs in the study at differing

81



Examples Compendium (Public)

times. The System class contains the HardwareInterface class with ports for outputs
of the model, and a Controller class which owns instances of objects which set those
output values. In addition, the Controller includes a Command class that contains
the main control loop. This loop will change the target coordinates of each UAV
at different time steps, which are sent as outputs to the correct UAV.

Figure 90: Global UAV Controller architecture

9.4.2 Configuration

The multi-model configuration comprises a collection of connections between the FMUs.
We do not use parameters in the example. The connections may be grouped into three
classes: between UAV and UAVController, between UAVController and GlobalController
and UAV to 3DUAV. These groups are repeated for each UAV in the pilot, therefore we
only describe one set of connections – see Section 9.5 for different co-simulation experi-
ments.

The first set is between the UAV and UAVController :

• from the UAV velX port to the UAVController velXIn port;

• from the UAV velY port to the UAVController velYIn port;

• from the UAV velZ port to the UAVController velZIn port;

• from the UAV batteryCharge port to the UAVController batteryCharge port;

• from the UAV posX port to the UAVController posXIn port;

• from the UAV posY port to the UAVController posYIn port;

• from the UAV posZ port to the UAVController posZIn port;

• from the UAVController throttleOut port to the UAV throttle port;

• from the UAVController pitchOut port to the UAV pitch port;

• from the UAVController yawOut port to the UAV yaw port; and

• from the UAVController rollOut port to the UAV roll port.

The second set is between the UAVController and GlobalController :
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• from the UAVGlobalController uavTargetX port to the UAVController targetX
port;

• from the UAVGlobalController uavTargetY port to the UAVController targetY
port; and

• from the UAVGlobalController uavTargetZ port to the UAVController targetZ
port.

The final set is between the UAV and 3DUAV :

• from theUAV currentPitch port to the 3DUAV quad.RotationResponse.pitchOut
port;

• from the UAV currentYaw port to the 3DUAV quad.RotationResponse.yawOut
port;

• from theUAV currentRoll port to the 3DUAV quad.RotationResponse.rollOut
port;

• from the UAV posX port to the 3DUAV quad.TranslationToXYZ.PosX port;

• from the UAV posY port to the 3DUAV quad.TranslationToXYZ.PosY port; and

• from the UAV posZ port to the 3DUAV quad.TranslationToXYZ.PosZ port.

9.5 Co-simulation

Four multi-model configuration variations are defined to enable different co-simulation
experiments. Those different multi-models vary by the number of UAVs (the number of
UAV and UAVController FMU instances) and the inclusion of the 3DUAV FMU for
visualisation:

3-UAV-3D This multi-model comprises 4 FMUs: 3 instances ofUAV.fmu; 3 ofUAVCon-
troller.fmu; 1 instance of 3DanimationFMU.fmu; and 1 instance of UAVGlobalCon-
troller.fmu. The multi-model has a co-simulation experiment with a run time of 10
seconds and with a variable step size. The 3D visualisation shows the flight paths
of the UAVs.

3-UAV-Non-3D The 3-UAV non-3D multi-model is the same as the above study, how-
ever without the 3DanimationFMU.fmu instance. Without the 3D view, livestream
values are enabled for the x-position of the 3 UAVs – this may be changed.

5-UAV-3D The 5-UAV-3D multi-model is the same as in the 5-UAV-3D version, how-
ever with 5 instances of UAV.fmu and UAVController.fmu.

5-UAV-Non-3D Again, the 5-UAV-Non-3D multi-model is the same as in the 5-UAV-
Non-3D version, however with 5 instances of UAV.fmu and UAVController.fmu.

The 3D visualisation offered by those 3D multi-models opens a 3D visualisation window
as shown in Figure 91 which depicts the state of the swarm as the simulation progresses.
It should be noted that the FMU has a fixed number of UAV objects, therefore the FMU
must be extended to handle a greater number of UAVs in a swarm.
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Figure 91: UAV Swarm visualisation

9.6 Analyses and Experiments

9.6.1 Test Automation and Model Checking

Unlike multi-model that has three or five UAVs in a swarm, we use two UAVs in the test
model. This is because multiple instances are not supported in the test model. For each
instance, we have to create a new block and have all similar local variables and state
machine diagrams in this block. More instances will complicate the test model as well as
solving of test cases in the SMT solver. Eventually, we choose two UAVs to keep the test
model relatively simple and still more than one UAV.

In addition, communication between controllers through the Ether is also introduced.
Therefore, the system covered in our test model is composed of

• two physical UAVs,

• two discrete UAV Controllers (one controller for each UAV),

• a discrete UAV Global Controller,

• a Ether model through which

– Global Controller is able to send target positions to UAV Controllers by uni-
cast, and

– UAV Controllers are able to broadcast their current positions to other UAV
Controllers and Global Controller.

Test Model Our test model aims to model the discrete part of the UAV swarm study.
To be more specific, it includes two UAV Controllers, a Global Controller and a Ether
which is described in Section 8. The physical UAVs are regarded as the test environment
of the model.

Inputs and Outputs The SystemUnderTest receives the following inputs (stimuli)
from the TestEnvironment :

• targetX1, targetY 1, and targetZ1: target positions on X, Y and Z respectively for
the first UAV (UAV1 ),
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• targetX2, targetY 2, and targetZ2: target positions on X, Y and Z respectively for
the second UAV (UAV2 ).

• velX1, velY 1, and velZ1: current velocity of UAV1 on the X, Y and Z axes
respectively,

• posX1, posY 1, and posZ1: current position of UAV1 on the X, Y and Z axes
respectively,

• batteryCharge: battery status of UAV1,

• velX2, velY 2, and velZ2: current velocity of UAV2 on the X, Y and Z axes
respectively,

• posX2, posY 2, and posZ2: current position of UAV2 on the X, Y and Z axes
respectively,

• batteryCharge: battery status of UAV2.

The SystemUnderTest provides the following observable outputs to the TestEnviron-
ment :

• pitchOut1 and pitchOut2: pitch set point for UAV1 and UAV2 respectively,

• throttleOut1 and throttleOut2: throttle set point for UAV1 and UAV2 respectively,

• rollOut1 and rollOut2: roll set point for UAV1 and UAV2 respectively.

Interfaces In addition to the interfaces between SystemUnderTest and TestEnviron-
ment for inputs and outputs, six extra interfaces, shown in Figure 92, are defined for
connections between all controllers and Ether.

• GlobalEtherInIF and GlobalEtherOutIF : interfaces for connections between Global
Controller and Ether. In the name of the interfaces, in and out mean inputs to
and outputs from Ether. Therefore, GlobalEtherInIF is an interface from Global
Controller to Ether, and GlobalEtherOutIF is an interface from Ether to Global
Controller. For the variable names in the interfaces, a denotes the address part
and p denotes the payload part. GEin1a, GEin1p1, GEin1p2 and GEin1p3 in
GlobalEtherInIF compose a package in which there are one integer for the address
and three doubles for the payload. But GlobalEtherOutIF contains two packages,
which means Ether can send two packages to Global Controller once but it can only
receive one package from Global Controller.

• UAV1EtherInIF and UAV1EtherOutIF : interfaces for connections between UAV1
Controller and Ether.

• UAV2EtherInIF and UAV2EtherOutIF : interfaces for connections between UAV2
Controller and Ether.

SystemUnderTest SystemUnderTest is composed of two UAV Controllers, a Global
Controller and a Ether. The architecture structure diagram of SystemUnderTest is shown
in Figure 93 and the connection diagram is illustrated in Figure 94. From the connection
diagram, we can see that all controllers are connected to Ether directly and each of them
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Figure 92: Interfaces in SystemUnderTest

has two connections to Ether in two directions. Therefore they are able to communicate
each other in two directions via Ether.

Figure 93: Architecture Structure Diagram of SystemUnderTest

Ether In order to contain messages for communication into the payload part of pack-
ages, the package structure is revised based on that given in Section 8.5.2.

A package is composed of two parts: address and payload. The address part is encoded
in one integer and the payload part is in three doubles.
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Figure 94: Connection Diagram of SystemUnderTest

• Address (32-bit int): high 24 bits are always 0, low 8 bits are split into two 4-bit
parts (one for the destination port and one for the source port).

– 0xF: for broadcast;

– 0x1-0xE: port 1 - port 15;

– 0x0: no message signal (used for the polling method to identify a valid pack-
age);

– In this case, 0x1 and 0x2 are used to identify UAV1 Controller and UAV2
Controller, 0xE for Global Controller, and 0xF for broadcast.

• Payload (three doubles): for the position or velocity on X, Y, and Z axes.

The state machine diagram of Ether is illustrated in Figure 95. After the Init state,
it enters the IDLE state with the timer variable t reset. Then if 10 ms is elapsed, the
transition to PreUpdate fires. It checks all input packages from Global Controller and
UAV Controllers, then copies them into output packages of the expected ports. In the
end, the state machine returns to IDLE and waits for the next loop.

UAV1 Controller Constant variables and local variables of UAV1 are shown in Fig-
ure 96.

It is worth noting that three local variables (curPosX2, curPosY 2, and curPosZ2) are
used to store current positions of UAV2. In other words, UAV1 is aware of the position
of UAV2. These variables are updated from the packages broadcast from UAV2 through
Ether.

The state machine diagram is illustrated in Figure 97. Most of the time, the state machine
resides in the Waiting state. And every 40 ms it starts to process.

• Firstly, it is going to update its own target position from the Global Controller
and current positions of UAVs according to incoming packages from Ether. That is
specified in the states between PreUpdateTargetPos and PostUpdateTarCurPos,

• Then, it broadcasts its own current position in the PostUpdateTarCurPos state
through Ether,

• Afterwards, it starts to update the parameters of the PID controller. The entry
of the state PreThrottle calculates the throttleIpart and throttlePpart while the

87



Examples Compendium (Public)

Figure 95: State Machine Diagram of Ether

transition from it to the state PostThrottle updates throttleDpart. Finally, the
entry of PostThrottle sets the output variable throttleOut. The states PrePitch
and PostPitch, and the states PreRoll and PostRoll are similar.

• Eventually, the state machine returns back to the Waiting state and waits for the
next loop.

88



Examples Compendium (Public)

Figure 96: Variables of UAV Controller

UAV2 Controller The UAV2 Controller model is very similar to that of the UAV1
Controller.

Global Controller The Global Controller model has six local variables ((curPosX1,
curPosY 1, curPosZ1, curPosX2, curPosY 2, and curPosZ2) to keep current posi-
tions of UAV1 and UAV2. They are updated from broadcast packages of UAV1 and
UAV2.

The Global Controller intends to send target positions to both UAV1 and UAV2 in each
loop (40 ms). Then from the UAV Controllers aspect, they get their target position
almost at the same time because they start to process inputs every 40 ms as well. Fur-
thermore, since one controller is able to send only one package each time to Ether and
the processing interval of Ether is 10 ms, we need to send target positions to UAV1 and
UAV2 separately with an interval of more than 10 ms. In the end, we use timing shown
in the state machine diagram of Global Controller in Figure 98. Its state machine loops
every 40 ms too. Global Controller sends the target position to UAV1 at 15 ms, the
target position to UAV2 at 30 ms, and check incoming packages from Ether at 40 ms.

TestEnvironment We use a state machine diagram of a block TESim in TestEnvi-
ronment to simulate input sequences of target positions to SystemUnderTest, which is
showed in Figure 99.

The target positions of UAV1 and UAV2 specified in the state machine diagram are
illustrated in Figure 100 and Figure 101.
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Figure 97: State Machine Diagram of UAV_CTRL

Model Checking We set “BMC steps” to 50. The properties below are checked to hold
in 50 steps.

P0 Livelock property by the Check Mode function on RT-Tester.

Check static model semantics ...done.
- IMR.SystemUnderTest.EtherI... [PASS]
- IMR.SystemUnderTest.GLOBAL_CTRLI...
[LIVELOCK_CHECK] Could not get value for the lower bound
of the symbol IMR.SystemUnderTest.GLOBAL_CTRLI.curPosX2.

• because in the test model, these variables are given a “RESTRICTED” stereo-
type but minimum and maximum values are not specified,

• after removing this stereotype for each variable (except input and output vari-
ables), it is fixed and the check is passed.

Check static model semantics ...done.
- IMR.SystemUnderTest.EtherI... [PASS]
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Figure 98: State Machine Diagram of GLOBAL_CTRL

- IMR.SystemUnderTest.GLOBAL_CTRLI... [PASS]
- IMR.SystemUnderTest.UAV1_CTRLI... [PASS]
- IMR.SystemUnderTest.UAV2_CTRLI... [PASS]
- IMR.TestEnvironment.tesim... [PASS]

P1 Global Controller sends packages only to UAV1 Controller or UAV2 Controller.

Globally ([IMR.out11a != 33] && [IMR.out11a != 34] &&
[IMR.out21a != 17] && [IMR.out21a != 18])

P2 All controllers could be in Idle at the same time.

Finally ([IMR.SystemUnderTest.End1I.End.Idle
&& IMR.SystemUnderTest.EtherI.Ether.Idle
&& IMR.SystemUnderTest.End2I.End.Idle])

P3 A broadcast package would never be received by its source port.

Globally ([IMR.out11a != 241] && [IMR.out21a != 242])

A Manual Implementation of SUT This SUT is composed of four modules (Global
Controller, Ether, UAV1 Controller, and UAV2 Controller). And each of them corre-
sponds to one controller in the test model and is wrapped in its own FMU in testing.

Test Results Two tests are carried out for this study according to the configuration
whether continuous UAV model is included in the test or not. One configuration is to
connect all outputs from the test procedure TP-00 to inputs of SUT (UAV in TestEnvi-
ronment is simulated), and another is to connect SUT’s outputs to inputs of two UAVs
(20-sim models) as well as inputs of TP-00 and connect outputs of two UAVs to inputs of
SUT. In the second configuration, the test shall be FAIL because inputs to SUTs are par-
tially from UAVs, rather than all from TP-00. Therefore, expected results are different
from actual results. But this configuration provides a more realistic Co-Simulation result
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Figure 99: State Machine Diagram of TESim

because the physical model is included in Co-Simulation. And its result could provide
further analysis for SUT.

Test Goals The test goal is defined by a user defined test case through the LTL formula:
Finally[_timeT ick ≥ 25000]. The Admissible Error and Latency in “signalmap.csv” are
set to 0.0000001 and 5 ms respectively.

Co-Simulation without UAVs This test configuration is used to check if the SUT
is a right implementation of the test model. The connection of five FMUs is configured
as shown in Figure 102. This configuration does not include UAVs. Instead, current
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Figure 100: Simulated Target Positions for UAV1

Figure 101: Simulated Target Positions of UAV2

positions and velocities from TP-00 are connected to corresponding ports in UAV Con-
trollers, and the UAV control signals (throttle, roll, yaw, and pitch) are connected from
UAV Controllers to TP-00. Therefore, TP-00 has all outputs and inputs connected to
the SUT. Finally, test results are able to check if behaviour between the SUT and the
test model (in TP-00 ) is consistent. Our test with used defined test case shows that all
test cases are either PASSED or INCONCLUSIVE, and no FAIL.
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Figure 102: Connection for Test without UAVs

Co-Simulation with UAVs This test configuration is not intended for checking SUT
against the test model, but for Co-Simulation with physical UAVs (20-sim models). The
connection of seven FMUs is configured as shown in Figure 103. There are two UAVs
and each of them is connected to corresponding UAV Controller.

Current positions and velocities to UAV Controllers are from UAVs and those from TP-
00 are left unconnected. But we still connect UAVs control signals from UAV Controllers
to both TP-00 and UAVs. This test is not able to check behaviour of the SUT against
the test model because input sequences in expected results from TP-00 and actual results
from SUT are different. The test results show the RT Tester reports many FAILs, almost
all FAILs after initial match with zero.

However, we can use this test configuration with Multi-model on the INTO-CPS applica-
tion to co-simulate the UAV swarm in a context that all target positions are given from
the test model by a state machine diagram of TestEnvironment.

Co-Simulation results for UAV1 are displayed in Figure 104. This chart illustrates target
positions in the X and Z axes (blue and orange respectively), current positions and
velocities in the X and Z axes (green-yellow, grey, pink, and brown), and control signals
from UAV controller (throttle - green, pitch - red, and roll - purple). Several observations
can be seen from this chart.

• basically, current position (posX1 - green-yellow) of UAV1 follows its target position
(curPosX1 - blue) though there is a delay,

• current position (posZ1 - grey) of UAV1 follows its target position (curPosZ1 -
orange) when it is larger than 0, but current position won’t go below 0. So UAVs
might have this restriction,

• velocities in the X and Z axes reflect movement of the UAVs in the axes as well,
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Figure 103: Connection for Test with UAVs

• and the changes of positions, directions and velocities are also driven by the changes
in control signals (throttle, picth, and roll).

Figure 104: Co-Simulation Results of UAV1

Co-Simulation results for UAV2 is displayed in Figure 105. This chart illustrates similar
observations as Figure 104.
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Figure 105: Co-Simulation Results of UAV2
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10 Autonomous Vehicle

10.1 Example Description

This pilot study is an example of a vehicle driving a route defined from a set of way
points. The multi-model consist of a steering controller and a model representing the
dynamics of a vehicle. The steering controller contains the desired route of the vehicle.
The vehicle is steered on the front wheels.

Figure 106: Overview and notation of the vehicle

10.2 Usage

The example is available from the INTO-CPS application menu at File>Import Exam-
ple Project or at https://github.com/INTO-CPS-Association/example-autonomous_
vehicle in the master branch. The autonomous vehicle pilot study is an example of a
vehicle driving through a path of specified way points.

The folder FMUs contains vehicle.fmu and steering_controller.fmu. The folder
Models contains the VDM-RT project of the steering controller and the 20sim model
of the dynamic description of the vehicle, BicycleModel.emx. The folder Multi-models
contains the multi-model definition.

To run a simulation, open the INTO-CPS application, expand the basic-sim folder and
open Simulation-1. Launch the COE and hit ‘Simulate’. By default, the simulation
integrates with a fixed time step size of 0.1 second for 100 seconds.

After a finished simulation, visualize the trajectory by running the file plot_trajectory.py
using Python 2.x. That illustrates the trajectory of the latest simulation in the folder
\Multi-models\simulation-1.

10.3 INTO-CPS SysML profile

The autonomous vehicle study SysML model is constructed using the the INTO-CPS
profile. The Architecture Diagram of the co-simulation is shown in Figure 107,the Con-
nection Diagram is shown in Figure 108. In the RouteFollowingSystem contains the
vehicle component and component Controller. Position and orientation of the vehicle is
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passed between the two components. From Vechicle the current position is passed to the
controller in where the desired orientation is determined based on the route and converted
to a steering angle delta_f.

Figure 107: Architecture Diagram

Figure 108: Connection Diagram

10.4 Multi-model

The parameters of the simulation can be changed in the INTO-CPS application or through
the mm.json file.

10.4.1 Models

The SysML model above shows that the multi-model consists of two separate models. A
20sim model of the dynamic behaviour of the vehicle and a steering controller that keeps
the vehicle on the specified path.

BicycleModel.emx The 20-sim model of the vehicle component, shown in Figure 109,
contains several components.

The actuation block, pvg_actuator converts the desired steering angle from the
controller to an steering angle compliant with the mechanical system. The actuation
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Figure 109: 20-sim vehicle model

is shown in Figure 110. delta_fl_w and delta_fr_w are the desired steering angles.
delta_f is the angle applied in the vehicle dynamics calculations. delta_f is
calculated as the average of the two angle components from left and right side.

Figure 110: Actuation system

The BicycleModel components holds the calculations of the dynamic bicycle model.
The BicycleModel is shown in Figure 111. The inputs to the model are the the
forward velocity of the vehicle u_r and the delta_f which is the steering angle as
shown in Figure 106. The outputs are the velocity components in x and y direction
and yaw-rate d_x_v, d_y_v and r.

The vehicle_model contains the following initial equations determining the weight
on the wheels, the position of the centre of gravity (CG) and the moment of inertia
as shown in Figure 112. An important feature of vehicle dynamics is the estimation
of the lateral tire forces. These are in this case calculated with a non-linear tire
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Figure 111: BicycleModel

Figure 112: initialequations
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model. The calculation of the slipangles and the lateral tire forces is determined as
shown in Figure 113.

steering_controller is a VDM-RT project. The System class contains a HardwareIn-
terface with RealPorts where the position and orientation of the vehicle is passed
into the control calculations. The control signal is calculated as the product of a
gain (p) and the angular misalignment of the current heading of the vehicle and the
desired heading towards the next way point. An illustration of the steering con-
troller is shown in 114 where x and y is the current position. The route is specified
in a .csv file in the folder ...\Models\steering_controller.

10.4.2 Configuration

One multi-models is defined: The model corresponds to the connection diagram shown
in Figure 107.

10.5 Co-simulation

A co-simulation is performed through the INTO-CPS application for 180 seconds using
a fixed time-step of 0.1 sec. The parameters of simulation is defined in the mm.json as :
"{fmu1}.Steering_control.speed_ref": 1,
"{fmu1}.Steering_control.look_ahead_dist": 1,
"{fmu1}.Steering_control.control_parameter": 1.

Running the simulation in the INTO-CPS application, the results are presented in Fig-
ure 115. The graphs vehicle.x and vehicle.y represents the relative position in meters
compared to the initial point of the vehicle. Steering_control.speed is the forward
velocity of the vehicle in m/s and Steering_control.delta_f is the steering angle in
radians.

By plotting the x and y components, the trajectory reveals, as shown in Figure 116. The
blue dashed line is the desired route, and the red graph is the simulated trajectory.

10.6 Analyses and Experiments

The performance, e.g. how well the vehicle track the desired route, can be investigated by
changing the parameters in the mm file. Hereby, the influence of the control parameter p
and the look ahead distance of the controller be evaluated under different velocities.

10.6.1 Design Space Exploration

The DSE features are available for this pilot study. An objective script has been reused
from the Line-following Robot pilot study, the meanCrosstrackError. For further infor-
mation, see Section 5. In this example, a simple DSE is presented. The DSE evaluates
the mean cross track error as a function of the velocity, gain and look-ahead parameter.
In this example, an exhaustive search is applied for exploiting the design space in a num-
ber of predefined values. The parameters applied here is defined in the dse.json file as
follows:
"{fmu1}.Steering_control.speed_ref": [0.5, 1.0]
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Figure 113: Tire model
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Figure 114: Sketch of steering control, (x, y) is the current position of the lawn mower,
(xd, yd) is the desired heading, and φe is the deviation.

Figure 115: Simulation results in the the INTO-CPS app

"{fmu1}.Steering_control.look_ahead_dist": [0.5, 1.0]
"{fmu1}.Steering_control.control_parameter": [0.5, 1.0],
giving a total of 23 = 8 simulations. The results are ranked only based on the mean
cross track error as shown in Figure 117 from the results.html file. The column mean-
CrossTrackError2 is forced to 1.0 since the designs has only been evaluated based
on the mean cross track error. This is forces through the file one_function.py in the
userMetricScripts folder.

Which illustrates that the best combination of parameters in terms of tracking the route
is the combination of look-ahead and control parameter p is [1.0, 1.0] at a velocity of 0.5
m/s.

To run the DSE script perform the following:
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Figure 116: Simulation results in the the INTO-CPS application

Figure 117: Ranking

• Download the DSE scripts using the download manager

• Open the terminal and write the following (Requires Python 2.x): python Algorithm_selector.py
Relative_path_to_dse_config Relative_path_to_coe_config
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11 Mass Spring Damper

11.1 Example Description

The mass spring damper pilot study demonstrates a stabilization technique for co-simulation.
The study comprises two mass spring dampers as illustrated in Figure 118.

Figure 118: Illustration of two mass spring damper system

There are two simulators included in the study, each representing a mass spring damper
system. The first simulator calculates the mass displacement and speed of m1 for a
given force Fk acting on mass m1. The second simulator calculates force Fk given a
displacement and speed of mass m1.

By coupling these simulators, the evolution of the position of the two masses can be com-
puted by a standalone numerical solver operating directly on the differential equations,
to give the expected behaviour illustrated in Figure 119.

Figure 119: The expected behaviour of the modelled masses

11.2 Usage

The example is available from the INTO-CPS application menu at File>Import Example
Project or at https://github.com/INTO-CPS-Association/example-mass_spring_damper
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in the master branch. There are several subfolders for the various elements: FMUs con-
tains the various FMUs of the study; Models – contains the constituent models defined
using the INTO-CPS simulation technologies; Multi-models – contains two multi-model
configurations, for both stable and unstable simulation.

The case-study_mass_springer_damper folder can be opened in the INTO-CPS appli-
cation to run the various co-simulations as detailed in this document. To run a simulation,
expand one of the multi-models and click ‘Simulate’ for an experiment.

11.3 Multi-model

11.3.1 Models

There are several models included in this pilot: a 20-sim model and three OpenModelica
models.

MassSpringDamper.emx The 20-sim model of the two spring damper example, shown
in Figure 120, comprises a sub-component for each spring damper. Each sub-
component describes the dynamics of the spring damper, and the two sub-components
are connected. MassSpringDamper1 calculates displacement and velocity of a mass
for a given force acting on it. MassSpringDamper2 calculates the resulting force
from a given a mass displacement and velocity.

Figure 120: 20-Sim model of Mass Spring Damper System

MassSpringDamper1.mo MassSpringDamper1.mo describes the same dynamics ex-
pressed in MassSpringDamper1 in the 20-sim model MassSpringDamper.emx.

MassSpringDamper2.mo MassSpringDamper2.mo describes the same dynamics ex-
pressed in MassSpringDamper2 in the 20-sim model MassSpringDamper.emx.

MassSpringDampersScenario.mo MassSpringDampersScenario.mo links MassSpring-
Damper1.mo and MassSpringDamper2.mo and defines parameters for simulation.

11.3.2 Configuration

A single multi-model is defined:

mm The multi-model mm uses the 20-sim/MassSpringDamper1.fmu and
20-sim/MassSpringDamper2.fmu FMUs.

There are several design parameters defined the multi-model configuration.

11.4 Co-simulation

Two co-simulation variations are defined for the multi-model. Both simulation config-
urations have identical parameters, including a runtime of 10 seconds and use a fixed
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step size of 0.001 seconds. The only difference between the two configurations is the
application of COE stabilisation (successive substitution).

Unstable This co-simulation configuration does not enable stabilisation. Co-simulating
this multi-model configuration produces the output plotted in Figure 121, which
shows two trajectories increasing indefinitely. This differs greatly from the expected
output illustrated in Figure 119 where the two trajectories tend to 0 over time.

Figure 121: Co-simulation output of unstable configuration

Stable This co-simulation configuration does enable stabilisation. Co-simulating this
multi-model configuration produces the output plotted in Figure 122, which shows
the expected behaviour as illustrated in Figure 119.

Figure 122: Co-simulation output of stable configuration
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12 Room Thermostat

12.1 Example Description

The full example is available in the Introduction to CoHLA document11. CoHLA is a co-
simulation construction domain specific language based on the High Level Architecture
standard for coordination of co-simulation. An extract from the Introduction to CoHLA
document is presented below.

A co-simulation of a small thermostat system – called the RoomThermostat – was devel-
oped to illustrate CoHLA. The system consists of one thermostat and three rooms. Each
of the rooms contains a heater and a window. The thermostat reads the temperature in
one of the rooms and is responsible for maintaining the temperature around the target
temperature by controlling the heater state. The thermostat controls the heater state in
all connected rooms, while the state is determined by the temperature in only one of the
rooms. The three rooms have different characteristics such as the heater size, window size
and surface area of the room.

The model of the room is a continuous-time model created in 20-sim. The Overture tool
was used to create a discrete-time model of the thermostat using VDM-RT. Both models
are exported to FMUs for use in a co-simulation.

The co-simulation of the system is specified in CoHLA to construct a co-simulation. The
model of the room has one input, one output and five parameters specified. The strings
after the parameter names represent the exact name within the FMU. A number of default
simulation settings is provided, such as the default model to load, time policy of HLA and
step size.

11https://github.com/INTO-CPS-Association/Documentation/blob/master/CoHLA-INTO-CPS/
CoHLA%20-%20INTO-CPS.pdf

108

https://github.com/INTO-CPS-Association/Documentation/blob/master/CoHLA-INTO-CPS/CoHLA%20-%20INTO-CPS.pdf
https://github.com/INTO-CPS-Association/Documentation/blob/master/CoHLA-INTO-CPS/CoHLA%20-%20INTO-CPS.pdf


Examples Compendium (Public)

References
[BH17] Jörg Brauer and Miran Hasanagic. Implementation of a model-checking com-

ponent. Technical report, INTO-CPS Deliverable, D5.3c, December 2017.

[FGP+15] John Fitzgerald, Carl Gamble, Richard Payne, Ken Pierce, and Jörg Brauer.
Examples Compendium 1. Technical report, INTO-CPS Deliverable, D3.4,
December 2015.

[FGP17] John Fitzgerald, Carl Gamble, and Ken Pierce. Method Guidelines 3. Tech-
nical report, INTO-CPS Deliverable, D3.3a, December 2017.

[Gam17] Carl Gamble. Comprehensive DSE Support. Technical report, INTO-CPS
Deliverable, D5.3e, December 2017.

[GMB17] Carl Gamble, Oliver Möller, and Victor Bandur. Test automation module in
the INTO-CPS Platform. Technical report, INTO-CPS Deliverable, D5.3a,
December 2017.

[GN16] Ivan Grujic and René Nilsson. Model-based development and evaluation of
control for complex multi-domain systems: Attitude control for a quadrotor
uav. Technical Report 23, Department of Engineering, Aarhus University,
January 2016.

[IPG+12] Claire Ingram, Ken Pierce, Carl Gamble, Sune Wolff, Martin Peter Chris-
tensen, and Peter Gorm Larsen. Examples compendium. Technical report,
The DESTECS Project (INFSO-ICT-248134), October 2012.

[MGP+17] Martin Mansfield, Carl Gamble, Ken Pierce, John Fitzgerald, Simon Foster,
Casper Thule, and Rene Nilsson. Examples Compendium 3. Technical report,
INTO-CPS Deliverable, D3.6, December 2017.

[PGP+16] Richard Payne, Carl Gamble, Ken Pierce, John Fitzgerald, Simon Foster,
Casper Thule, and Rene Nilsson. Examples Compendium 2. Technical report,
INTO-CPS Deliverable, D3.5, December 2016.

[PVL11] Jan Peleska, Elena Vorobev, and Florian Lapschies. Automated Test Case
Generation with SMT-Solving and Abstract Interpretation. In Mihaela Bo-
baru, Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi, editors, Nasa
Formal Methods, Third International Symposium, NFM 2011, pages 298–312,
Pasadena, CA, USA, April 2011. NASA, Springer LNCS 6617.

[TN16] Casper Thule and René Nilsson. Considering Abstraction Levels on a Case
Study. In Peter Gorm Larsen, Nico Plat, and Nick Battle, editors, The 14th
Overture Workshop: Towards Analytical Tool Chains, pages 16–31, Cyprus,
Greece, November 2016. Aarhus University, Department of Engineering. ECE-
TR-28.

[Ver15] Verified Systems International GmbH, Bremen, Germany. RT-Tester Model-
Based Test Case and Test Data Generator – RTT-MBT: User Man-
ual, 2015. https://www.verified.de/products/model-based-testing/,
Doc. Id. Verified-INT-003-2012.

109

https://www.verified.de/products/model-based-testing/

	Introduction
	Single-tank Water Tank
	Example Description
	Usage
	INTO-CPS SysML profile
	Multi-model
	Co-simulation
	Analyses and Experiments

	Three-tank Water Tank
	Example Description
	Usage
	INTO-CPS SysML profile
	Multi-model
	Co-simulation
	Analyses and Experiments

	Fan Coil Unit (FCU)
	Example Description
	Usage
	INTO-CPS SysML Profile
	Multi-model
	Co-simulation
	Analyses and Experiments

	Line-following Robot
	Example Description
	Usage
	INTO SysML profile
	Multi-model
	Co-simulation
	Analyses and Experiments

	Turn Indicator
	Example Description
	Usage
	SysML
	Analyses and Experiments

	Unmanned Aerial Vehicle
	Example Description
	Usage
	INTO-CPS SysML profile
	Multi-model
	Co-simulation

	Ether
	Example Description
	Usage
	Multi-model
	Co-simulation
	Analyses and Experiments

	Swarm of UAV
	Example Description
	Usage
	INTO-CPS SysML profile
	Multi-model
	Co-simulation
	Analyses and Experiments

	Autonomous Vehicle
	Example Description
	Usage
	INTO-CPS SysML profile
	Multi-model
	Co-simulation
	Analyses and Experiments

	Mass Spring Damper
	Example Description
	Usage
	Multi-model
	Co-simulation

	Room Thermostat
	Example Description


