
INtegrated TOol chain for model-based design of CPSs

The INtegrated TOolchain for Cyber-Physical
Systems (INTO-CPS): a Guide

Version: 1.0

Date: April, 2019

The INTO-CPS Association

http://into-cps.org

The INTO-CPS Guide (Public)

Contributors:

Peter Gorm Larsen, Aarhus University
John Fitzgerald, Newcastle University
Jim Woodcock, University of York
Christian König, TWT
Stylianos Basagiannis, UTRC
Etienne Brosse, Softeam
Cláudio Gomes, University of Antwerp
José Cabral, Fortiss
Hugo Daniel Macedo, Aarhus University
Casper Thule, Aarhus University
Andrey Sadovykh, Softeam
Constantin-Bala Zamfirescu,“Lucian Blaga”, University of Sibiu
Mihai Neghina, “Lucian Blaga”, University of Sibiu
Ken Pierce, Newcastle University
Carl Gamble, Newcastle University
Richard Payne, Newcastle University
Maurizio Palmieri, Pisa University

Editors:

Peter Gorm Larsen, Aarhus University
John Fitzgerald, Newcastle University

©The INTO-CPS Association

2

The INTO-CPS Guide (Public)

Document History

Ver Date Author Description
0.1 23-04-2018 Peter Gorm Larsen Initial ver-

sion.
0.2 01-06-2018 Hugo Daniel Macedo Added MAN

D&T text.
0.3 04-07-2018 Mihai Neghina Added

IPP4CPPS
case.

0.4 20-07-2018 Christian König Added tool
chain sec-
tion.

0.5 26-07-2018 Stylianos Basagiannis Completed
case studies.

0.6 20-08-2018 Jim Woodcock Added sec-
tion of
foundations.

0.7 23-08-2018 Claudio Gomes Added re-
lated work
section.

0.8 01-09-2018 John Fitzgerald Added meth-
ods section.

0.9 21-09-2018 John Fitzgerald Edited meth-
ods section.

1.0 07-10-2018 Peter Gorm Larsen & John Fitzgerald Global Edit.

3

The INTO-CPS Guide (Public)

Abstract

The successful design, implementation and maintenance of Cyber-Physical
Systems (CPSs) requires collaboration between diverse engineering disci-
plines and organisations, each of which may use radically different tools and
notations. The INtegrated TOolchain for Cyber-Physical Systems (INTO-
CPS) is an open framework that permits the coupling of tools for model-
based CPS engineering. Its formal foundations and the use of the Functional
Mockup Interface standard permit the coherent integration of tools that de-
scribe CPS architecture, data, and discrete-event and continuous-time mod-
els of system elements. This allows engineers to produce collaborative mod-
els (co-models) and undertake co-simulation of behaviour at the whole-CPS
level. It permits the machine-assisted ways to explore the design space, gen-
eration of tests and of code. The value of the approach in reducing time to
market and in particular reducing the number of physical prototype iterations
required in product development, has been demonstrated in industry.

This report is a guide to INTO-CPS. It includes a review of the challenges
facing CPS engineers today. The INTO-CPS technology is described briefly,
and the semantic foundation of the approach is outlined. Methods for exploit-
ing the toolchain within existing systems engineering processes are outlined,
and the current toolchain itself is described alongside several industry stud-
ies. We argue that the future of CPS engineering relies on the integration
of existing tools and processes, and we offer a potential roadmap for future
research in the field, notably in realising the potential of co-models as digital
twins using machine learning in order to gain intelligence.

4

The INTO-CPS Guide (Public)

Contents

Contents 5

1 Introduction 7

2 Challenges in Engineering CPSs 10
2.1 Time to Market . 10
2.2 Diversity of Design Models . 11
2.3 Collaboration . 11

3 INTO-CPS in a Nutshell 12
3.1 How INTO-CPS works . 13
3.2 Industrial Case studies . 15
3.3 The INTO-CPS foundations 16
3.4 The INTO-CPS methods and guidelines 17

4 The INTO-CPS Foundations 18
4.1 Foundations of the SysML profile for CPS modelling 18
4.2 Discrete Event Models . 22
4.3 Continuous Models . 23
4.4 Functional Mock-up Interface 24

5 INTO-CPS Method Guidelines 27
5.1 Introduction . 27
5.2 Concepts and Terminology . 27
5.3 Activities Enabled by INTO-CPS 33
5.4 Configuring Multi-Models . 35
5.5 An Overview of Advanced Methods 35

6 The INTO-CPS Tool Chain 42
6.1 Modelio . 42
6.2 Modelling tools . 43
6.3 RT Tester . 45
6.4 3D animation . 46
6.5 The INTO-CPS Application 46

7 The INTO-CPS Industrial Case Studies 48
7.1 The Automotive Case Study 49
7.2 The Agricultural Case Study 50
7.3 The Building HVAC Case Study 51

5

The INTO-CPS Guide (Public)

7.4 The Railway Case Study . 52
7.5 The Aerospace Case Study . 54
7.6 The Manufacturing Case Study 55
7.7 The Combustion Engine Case Study 59
7.8 The Mars Rover Case Study 60

8 Related Work 61

9 Future Directions 63
9.1 Adapting FMUs Easily to Ones Needs 63
9.2 Enlarging the tools and standards supported by the INTO-

CPS Tool Suite . 63
9.3 Use in a Cloud-based Eco-system/Marketplace 64
9.4 Use in a Digital Twin setting 64
9.5 Increased Support for Dynamic Evolution Scenarios 65
9.6 Incorporation of Computational Fluid Dynamics Co-simulations 65
9.7 Increased support for Human Interaction 65
9.8 Increased support for Network Considerations 66
9.9 Intelligence, Adaptivity and Autonomy 66
9.10 Tradeoff in Abstraction between Speed and Accuracy 66

References 68

A List of Acronyms 84

B Background on the Individual Tools 86
B.1 Modelio . 86
B.2 Overture . 87
B.3 20-sim . 89
B.4 OpenModelica . 90
B.5 RT-Tester . 91
B.6 Eclipse 4diac™ . 93

6

The INTO-CPS Guide (Public)

1 Introduction

Cyber-Physical Systems (CPSs) present major business and societal oppor-
tunities in a variety of application areas— if they can be developed eco-
nomically [CBM+13]. Model-Based Development (MBD) has the potential
to enhance the development of CPSs, increasing the competitiveness of in-
dustry by shortening time to market and reducing development costs. In
the interface between disciplines, different formalisms and technical cultures
meet, and the traditional approaches for designing systems vary significantly
among the relevant fields. Some researchers advocate for describing such hy-
brid systems using a single formalism/tool [Pto14, Pla18], but here we believe
that it is better to enable stakeholders with different disciplinary backgrounds
to produce their constituent models using their preferred formalism/tool and
then enable joint analysis using co-simulation [GTB+18] and ensuring that
there is an underlying common foundation for all of them. Even the propos-
als for a single formalism [Pto14, Pla18] recognise that one cannot expect
different stakeholders to learn the same formalism. Instead, they propose a
formalism that integrates multiple sub-formalisms, to ensure that the result
can cover a wide range of paradigms.

Different stakeholders can produce constituent models of the parts they are
responsible for. The combination of the different constituent models forms
the CPS model. The main challenge is to ensure that such constituent mod-
els connect and thus can be combined in different analysis conducted of the
behaviour of the CPS in its desired surroundings, typically called its envi-
ronment. Since the design of the CPSs depends on the ability to connect
the behaviours of its constituent models, the main challenge is to make sure
these results are trustworthy.

Different research projects have targeted the development of chains of tools
which collectively would enable the envisaged combination of different for-
malisms and tools in the development of CPSs. The DESTECS1 project
[BLV+10] combined the Overture/VDM tool [LBF+10] with the 20-sim tool
[Kle06] with a dedicated co-simulation combination with a Crescendo tool
[FLV14]. The MODELISAR project2 developed an open standard for inter-
facing between different constituent models called the Functional Mockup
Interface (FMI) enabling co-simulation between any tool supporting this

1This is an acronym for “Design Support and Tooling for Embedded Control Software”,
see http://destecs.org/.

2See https://itea3.org/project/modelisar.html.

7

http://destecs.org/
https://itea3.org/project/modelisar.html

The INTO-CPS Guide (Public)

standard maintained by the Modelica Association3. The INTO-CPS project4
took this further with a tool chain going all the way from requirements to final
realisations using the FMI standard. This developed the INTO-CPS technol-
ogy which consists of 1) a common semantic foundation, 2) a methodology
with guidelines for the development of CPS and 3) an open tool chain. This
can be summarised in Table 1.

Table 1: Summary of resent research activities in the field of co-simulation.

Project Duration Goals
COSIBA [cos] 2000–2002 Formulate a co-simulation backplane for coupling elec-

tronic design automation tools, supporting different ab-
straction levels.

ODETTE [ode] 2000–20003 Develop a complete co-design solution including hard-
ware/software co-simulation and synthesis tools.

MODELISAR [mod] 2008–2011 Improve the design of embedded software in vehicles.
DESTECS [des] 2010–2012 Improve the development of fault-tolerant embedded sys-

tems.
INTO-CPS [int] 2015–2017 Create an integrated tool chain for Model-Based Design of

CPS with FMI.
ACOSAR [aco] 2015–2018 Develop a non-proprietary advanced co-simulation inter-

face for real time system integration.
OpenCPS [opea] 2015–2018 Improve the interoperability between Modelica, UML and

FMI.
ERIGrid [eri] 2015–2020 Propose solutions for Cyber-Physical Energy Systems

through co-simulation.
PEGASUS [peg] 2016–2019 Establish standards for autonomous driving.
CyDER [cyd] 2017–2020 Develop a co-simulation platform for integration and anal-

ysis of high PV penetration.
EMPHYSIS [emp] 2017–2020 Develop a new standard (eFMI) for modeling and simula-

tion environments of embedded systems.

Before the end of the INTO-CPS project, the Intellectual Property (IP)
developed was transferred to the non-profit INTO-CPS Association5. The
Association maintains and further develops the INTO-CPS technology, and
grows the open tool chain by adding additional tools from its partners, while
keeping the documentation and tutorial material up to date.

Since this guide is meant as a general introduction to INTO-CPS it is writ-
ten such that it should be relatively easy to jump around and read different
sections of interest. This guide to INTO-CPS begins with an overview of
challenges in the engineering of CPSs in Section 2. Then Section 3 provides
a short overview of the INTO-CPS project in a nutshell. Section 4 gives an
overview of the CPS foundations; Section 5 gives an overview of the CPS
methodology; and Section 6 an overview of the tool chain. The industrial
use of the INTO-CPS technology is summarised in Section 7. Finally, Sec-

3See https://www.modelica.org/.
4See http://projects.au.dk/into-cps/.
5This is registered as a legal entity in Denmark, see into-cps.org/.

8

https://www.modelica.org/
http://projects.au.dk/into-cps/
into-cps.org/

The INTO-CPS Guide (Public)

tion 8 provides an overview of related work, and Section 9 looks at potential
future directions for the INTO-CPS technology. There are two appendices:
Appendix A provides a list of acronyms, and Appendix B is an overview of
the individual tools used in the INTO-CPS tool chain.

9

The INTO-CPS Guide (Public)

2 Challenges in Engineering CPSs

The vision underpinning INTO-CPS is that teams of developers from diverse
disciplines and organisations are enabled to collaborate and converge more
rapidly than today on system designs that perform optimally. Realising this
vision requires methods and tools that allow each discipline and organisation
to make its contribution without compromising its Intellectual Property (IP)
or significantly altering its well-tried and established techniques. It should
be possible to federate these diverse design artefacts to allow analysis of the
system-level consequences of well-founded design decisions made in any one
domain, and the trade-offs between them. How, then, can we use semantically
well-founded approaches to support such multidisciplinary design in a cost-
effective way? This question poses several significant challenges.

2.1 Time to Market

There is a clear need for model-based methods that permit early design space
exploration, optimisation and experimentation without delaying the launch
of a new product to the market. Important issues (that INTO-CPS brings
solutions to) here are:

Cutting time to market for engineering CPSs: In a highly active CPS
marketplace, getting the right solution first time is essential. We believe
that the interoperability of tools in the INTO-CPS tool suite enables
a more agile close collaboration between stakeholders with diverse dis-
ciplinary backgrounds.

Exploring large design spaces efficiently: CPS design involves making
design decisions in both the cyber and physical domains. Trade-off
analysis can be challenging. Co-simulation enables the systematic ex-
ploration of large design spaces in the search for optimal solutions.

Limiting expensive physical tests: CPS development often relies on the
expensive production and evaluation of a series of physical prototypes.
Co-simulation enables users to focus on testing different models of CPS
elements in a virtual setting, gaining early assessment of CPS-level
consequences of design decisions.

10

The INTO-CPS Guide (Public)

2.2 Diversity of Design Models

Disciplines such as software, mechatronic and control engineering have evolved
notations and theories that are tailored to their needs. It is undesirable to
suppress this diversity by enforcing uniform general-purpose models [FGL+15,
LFW+16b]. The semantics of these notations and theories will have very dif-
ferent foundations in discrete or continuous domains. The goal, then, must be
to support the effective federation of such highly diverse design models.

2.3 Collaboration

There is a clear need to provide mechanisms to support collaborative model-
based engineering without compromising the independence of contributors.
Important issues (that INTO-CPS brings solutions to) here are:

Avoiding vendor lock-in by open tool chain: Some commercial solutions
provide at least a part of the functionality provided by the INTO-CPS
tool chain with a high level of interoperability. However, in particular
for Small and Medium-sized Enterprises (SMEs), there is a risk of being
restricted in the choice of specialist tools.

Traceability and Provenance: CPS development often relies on the ex-
pensive production and evaluation of a series of physical prototypes.
Co-simulation enables users to focus on testing different models of CPS
elements in a virtual setting, gaining early assessment of CPS-level con-
sequences of design decisions.

The foundations, methods and tools of CPS engineering should incorporate
both the Discrete-Event (DE) models of computational processes, and the
continuous-value and Continuous-Time (CT) formalisms of physical dynam-
ics engineering. Our approach is to support the development of collabora-
tive models containing DE and CT elements expressed in diverse notations,
and to support their analysis by means of co-simulation based on a recon-
ciled operational semantics of the individual notations’ simulators [FLV14].
This enables exploration of the design space and allows relatively straight-
forward adoption in businesses already exposed to some of these tools and
techniques.

11

The INTO-CPS Guide (Public)

3 INTO-CPS in a Nutshell

To address the challenges presented above in Section 2, the INTO-CPS
project has created an integrated “tool chain” for comprehensive model-
based design of CPSs. The tool chain supports multidisciplinary, collabo-
rative modelling of CPSs from requirements, through simulation of multiple
heterogeneous models that represent the physical elements as well as the
computational parts of the system, down to realisation in hardware and soft-
ware, enabling traceability at all stages of the development as outlined in
figure 1.

Figure 1: Connections in the INTO-CPS tool chain.

The goals of the INTO-CPS project have been to:

1. Build an open, well-founded tool chain for multidisciplinary model-
based design of CPS that covers the full development life cycle of CPS.

2. Provide a sound semantic basis for the tool chain.

3. Provide practical methods in the form of guidelines and patterns that
support the tool chain.

4. Demonstrate the effectiveness of the methods and tools in an industrial
setting in a variety of application domains.

12

The INTO-CPS Guide (Public)

5. Form an INTO-CPS Association to ensure that results extend beyond
the life of the project.

3.1 How INTO-CPS works

The INTO-CPS project had a consortium consisting of 11 partners (four uni-
versities, seven companies) who contributed with complementary knowledge,
baseline technologies and applications. The baseline technologies support
systems modelling (Modelio), modelling and simulation of physical systems
(OpenModelica, 20-sim), discrete-event modelling and simulation (Overture),
Co-Simulation (Crescendo, TWT Co-Simulation engine) and test automation
(RT-Tester). These baseline technologies enable both descriptions of Discrete
Event (DE) models as well as Continuous-Time (CT) models. Any number
of such constituent models may be combined in a hybrid setting using the
INTO-CPS technology. Advancing over technologies commonly used today
in industry, INTO-CPS provides an open tool chain that enables the follow-
ing:

1. Providing a faster route to market for CPS products where control
aspects depend upon the development of physical elements (e.g. me-
chanical parts) that typically take a long time to be developed.

2. Avoiding vendor lock-in by having an open tool chain that can be ex-
tended and used in different ways. Although it is well-founded it is
based on pragmatic principles where a trade-off between accuracy and
speed of analysis is enabled.

3. Including capabilities for exploring large design spaces efficiently so
that “optimal” solutions can be found given the parameters that are
important for the user, both on the cyber and the physical side.

4. Limiting the necessity for large amounts of expensive physical tests in
order to provide the necessary evidence for the dependability of the
CPS.

5. Enabling traceability of all project artefacts produced by different tools
using an open traceability standard.

A Co-simulation Orchestration Engine (COE) called Maestro has been built
on the baseline technologies and in accordance with requirements driven by
the industry case studies outlined below [TLLM18]. This engine combines
previous experience from TWT’s Co-Simulation engine and the Crescendo
tool developed in the project Design Support and Tooling for Embedded

13

The INTO-CPS Guide (Public)

Control Software (DESTECS) [BLV+10]. The goals for the COE include,
among others, optimised scalability and performance, and data exchange
between the different models facilitated by the Functional Mockup Inter-
face (FMI) [Blo14]. Interfaces to further tools will be provided so that the
requirements and the different artefacts will be fully exploited. An INTO-
CPS Application acting as a common front-end to the INTO-CPS tool chain
has been produced using web-based technologies (on top of Electron). This
enables stakeholders without detailed knowledge on the different modelling
technologies to experiment with alternative candidate designs and use sys-
tematic ways to either explore a large design space or systematically test
heterogeneous models. The INTO-CPS Application, the COE and its most
important connections are shown in Figure 26.

Figure 2: Overview of the INTO-CPS tool chain.

The COE connects multiple diverse models, each in the encapsulated form
of a Functional Mock-up Unit (FMU) or running in its native modelling
environment, to an overall system model. An algorithm for Design Space
Exploration (DSE) enables sweeps through ranges of design parameters, per-
forming co-simulations on each. System robustness can be evaluated by using
Test Automation (TA) tools that can manipulate the simulation. Links to
models can be kept in a database to allow for versioning and traceability even

6These connections was all established inside the INTO-CPS project. See Figure 4 for
the full current tool chain.

14

The INTO-CPS Guide (Public)

between artefacts produced by different tools. The INTO-CPS tool chain is
described in more detail in Section 6.

3.2 Industrial Case studies

Inside the INTO-CPS project four industry-led case studies from different
application domains have allowed us to evaluate the final INTO-CPS tool
chain. These cases (and a couple of industrial cases conducted by external
companies) are described further in Section 7. A brief overview of the indus-
trial cases inside the INTO-CPS project and their main challenges are:

In the Railways case study led by the French company ClearSy, an innovative
distributed interlocking solution has been developed, where signalling safety
rules take both the logic and the physical conditions into account with a
higher degree of independence than normally. The challenge was to find the
right trade-off between the efficiency of an interlocking system (availability
of routes, trains’ delays and cost of interlocking system) and safety (collision
avoidance, derailment prevention, availability and efficiency of the emergency
system).

The Agriculture case study led by the Danish company Agrointelli concerns
both an automated control system for an agricultural robot as well as an au-
tonomously operating lawn mower. The robot, which provides more efficient
removal of weeds in the field while operating safely with minimal human in-
teraction. In addition, the development of the autonomous control for the
lawn mower was carried out. The challenge in both cases was to simulate
the behaviour of physical components (such as mechanical loading on certain
elements) together with controls of the automated system even before the
physical mechanical components are available. These controls access local
data (e.g. sensors) and external data (e.g. GPS). Model-based design allowed
for accelerated time-to-market and virtual verification while reducing the
need for multiple physical prototypes.

In the Building Automation case study led by the Irish part of United Tech-
nology Research Centre (UTRC), CPSs for control of Heating, Ventilation
and Air-conditioning (HVAC) have been developed. These CPSs need to
be adaptable to components of various manufacturers and different building
patterns and the corresponding requirements. The challenge here is also to
manage the complexity of the overall system in a way so the co-simulations
are sufficiently scalable. The various parts that influence an HVAC system
have been modelled and simulated, e.g. the fan-coil unit that distributes

15

The INTO-CPS Guide (Public)

air, the buildings and rooms as well as the controllers of the fan-coil units.
In addition, UTRC has run an extensive evaluation of all INTO-CPS fea-
tures including DSE, test automation, Hardware-in-the-Loop (HiL) and 3D
co-simulation.

In the Automotive case study led by the German company TWT, a range
optimisation assistant for electric vehicles is being developed. In order to
maximise the range without compromising other qualities such as comfort
or speed, a comprehensive assessment of the vehicle and its environment is
necessary. To achieve this goal, all relevant parts of the system have been
modelled, e.g. battery, drive train, topography, traffic, weather and cabin
thermal control. These constituent models are created in native industrial
tools, such as Matlab, and coupled using the INTO-CPS tool suite.

In order to properly compare the INTO-CPS technology under development
with existing modelling and simulation tools, some of the industrial case
studies have, on purpose, developed some of their constituent models using
such legacy tools (AI has used Gazebo, UTRC has used Dymola and TWT
has used Matlab) in order to experiment with the FMUs exported from
them in connection with the COE and the rest of the INTO-CPS tool chain.
Generally speaking, the results have been quite positive.

3.3 The INTO-CPS foundations

The development of tools and methods in INTO-CPS is based on a sound
semantic description of co-simulation. Our tools use VDM-RT as the discrete-
event language and Modelica as the continuous-time language. The frame-
work for co-simulation is based on FMI. Both languages have been formalised
and mechanised in this framework using Isabelle/UTP. We have a semantics
of the relevant parts of SysML that can be used with FMI. These foun-
dations might allow for the formal checking of the validity of analysis and
co-simulation results. There has also been a close integration with the indus-
trial case studies (in particular, the railways and building applications) and
supported the development of the INTO-CPS tool chain. It has been demon-
strated how to use the foundational tools, with both theorem proving and
model checking, to add value to the INTO-CPS tool chain. The foundations
are described in more detail in Section 4.

16

The INTO-CPS Guide (Public)

3.4 The INTO-CPS methods and guidelines

Lowering the barriers to multidisciplinary model-based engineering of CPSs
demands methods that permit the deployment of tools in industry processes,
embodied in guidelines that reflect experience gained using such methods. We
present our modelling methods as guidelines for applying the INTO-CPS tool
chain in real industry contexts, with a strong focus on supporting systematic
DSE, our form of tradespace analysis, and on managing the traceability of
design artefacts. All of the methods and guidelines materials have been made
ready for subsequent use by the INTO-CPS Association.

In order to ease practical deployment of INTO-CPS technology, a SysML
profile has been developed to enable designers to move more readily from
abstract system models to the structure of heterogeneous co-models. Thus,
it has been extended with the ability to help engineers describe explicitly the
parameters, objectives and ranking involved in the DSE process, and to allow
sweeps to be made both over parameters and operating scenarios. We have
developed a Traceability Information Model (TIM) that supports the needs of
heterogeneous CPS engineering teams. In defining permissible relations be-
tween artefacts and activities, we have drawn on two sources: Open Services
for Lifecycle Collaboration (OSLC) and W3C PROV supported traceability
links.

Our guidelines have been implemented in training materials and pilot studies,
which have been made publicly available and can readily be imported into
the INTO-CPS Application, making it easy for newcomers to experiment
with the INTO-CPS tools and methods. The pilots provide coverage of all
INTO-CPS simulation technologies (VDM-RT, 20-sim and OpenModelica),
have architectural models in SysML using the INTO-SysML profile, may
be co-simulated with the INTO-CPS Application, can perform DSE, use
code generation and have support for test automation. The methods and
guidelines are described in more detail in Section 5.

17

The INTO-CPS Guide (Public)

4 The INTO-CPS Foundations

The development of tools and methods in INTO-CPS is based on a sound
semantic description of co-simulation. Our tools use VDM-RT as the discrete-
event language and Modelica as the continuous-time language. The frame-
work for co-simulation is based on FMI. We have formalised and mechanised
both languages in this framework using Isabelle/UTP. We have a semantics
of the relevant parts of SysML that can be used with FMI. These foun-
dations might allow for the formal checking of the validity of analysis and
co-simulation results. The value of the foundational tools, with both theo-
rem proving and model checking, has been demonstrated to add value to the
INTO-CPS tool chain.

4.1 Foundations of the SysML profile for CPS mod-
elling

The INTO-CPS project proposes a novel technique for proof-based analysis of
co-simulations that considers both architectural and behavioural properties
of co-simulations. In D2.3a [ZCWO17], the technique is illustrated by way
of two case studies, one from from railways and another one from the area
of smart buildings control. D2.2a [ACM+16] instantiates the approach to
robotic control.

4.1.1 SysML

The Systems Modelling Language (SysML) [OMG12] builds on the Unified
Modelling Language (UML) to provide a general-purpose notation for sys-
tems engineering. SysML supports the modelling of CPSs, which are designed
to actively engage with the physical world in which they reside. They tend
to be heterogeneous: their subsystems tackle a wide variety of domains (such
as, mechanical, hydraulic, analogue, and a plethora of software domains) that
mix phenomena of both continuous and discrete nature, typical of physical
and software systems, respectively. Such systems are typically engineered
using a variety of languages and tools that adopt complementary paradigms;
examples are physics-related models, control laws, and sequential, concur-
rent, and real-time programs. This diversity makes CPS generally difficult
to analyse and study.

18

The INTO-CPS Guide (Public)

4.1.2 Co-simulation

CPSs are often handled modularly to tackle this heterogeneity and com-
plexity. To separate concerns effectively, the global model of the system
is decomposed into subsystems, each typically focused on a particular phe-
nomenon or domain and tackled by the most appropriate modelling tech-
nique. Simulation, the standard validation technique for CPS, is often carried
out modularly also, using co-simulation [GTB+17a, GTB+18], the coupling
of subsystem simulations. This constitutes the backdrop of the industrial
Functional Mockup Interface (FMI) standard [FMI14, BBG+13b, CWA16]
for co-simulation of components built using distinct modelling tools. The
FMI Standard has been proposed to address the challenge of interoperabil-
ity, coupling different simulators and their high-level control components via
a bespoke FMI API.

While co-simulation is currently the predominant approach to analyse CPS,
INTO-CPS proposes a proof-based complementary technique that uses math-
ematical reasoning and logic. Simulation is useful in helping engineers to un-
derstand modelling implications and spot design issues, but cannot provide
universal guarantees of correctness and safety. It is usually impossible to run
an exhaustive number of simulations as a way of testing the system. For
these reasons, it is often not clear how the evidence provided by simulations
is to be qualified, since simulations depend on parameters and algorithms,
and are software systems (with possible faults) in their own right.

Proof-based techniques, on the other hand, hold the promise of making uni-
versal claims about systems. They can potentially abstract from particular
simulation scenarios, parametrisations of models, and interaction patterns
used for testing. In traditional software engineering, they have been success-
fully used to validate the correctness of implementations against abstract
requirements models [WLBF09]. Yet, their application to CPS is fraught
with difficulties: the heterogeneous combination of languages used in typical
descriptions of CPS raises issues of semantic integration and complexity in
reasoning about those models. The aspiring ideal of any verification tech-
nique is a compositional approach, and such approaches are still rare for
CPS [NLFS18].

4.1.3 The INTO-CPS approach to verification and co-simulation

Our approach is to formally verify the well-formedness and healthiness of
SysML CPS architectural designs as a prelude to co-simulation. The designs

19

The INTO-CPS Guide (Public)

are described using INTO-SysML [APC+15], a profile for multi-modelling
and FMI co-simulation. The well-formedness checks verify that designs com-
ply with all the required constraints of the INTO-SysML meta-model; this
includes connector conformity, which checks the adequacy of the connections
between SysML blocks (denoting components) with respect to the types of
the ports being wired. The healthiness checks concern detection of alge-
braic loops, a feedback loop resulting in instantaneous cyclic dependencies;
this is relevant because a desirable property of co-simulation, which often
reduces to coupling of simulators, is convergence (where numerical analy-
ses approximate the solution), which is dependent on the structure of the
subsystems and cannot be guaranteed if this structure contains algebraic
loops [KS00, BBG+13b]. The work in the INTO-CPS project demonstrates
the capabilities of our verification workbench for modelling languages and
engineering theories mechanised in the Isabelle proof assistant [NK14], and
the CSP process algebra [Hoa85] with its accompanying FDR3 refinement-
checker [RABR16].

Our technique is based on abstraction: we use a relational view of FMUs
that abstracts from reactive behaviours as well as the API imposed by FMI.
This allows us to focus on the fundamental properties of a co-simulation,
while introducing details into the model view refinement that preserves those
properties.

4.1.4 Instantiation for robotics applications

We have extended and restricted the INTO-SysML profile to deal with mo-
bile and autonomous robotic systems. For modelling the controllers, we use
RoboChart [LMR+17]. For modelling the robotic platform and the environ-
ment, we use Simulink [Inca]. We have also given a behavioural semantics
for models written in the profile using CSP. The semantics is agnostic to
RoboChart and Simulink, and captures a co-simulation view of the multi-
models based on the FMI API.

Our semantics can be used in two ways. First, by integration with a seman-
tics of each of the multi-models that defines their specific responses to the
simulation steps, we can obtain a semantics of the system as a whole. Such
semantics can be used to establish properties of the system, as opposed to
properties of the individual models. In this way, we can confirm the results
of co-simulations via model checking or theorem proving, for example.

There are CSP-based formal semantics for RoboChart [MCR+16] and Simu-

20

The INTO-CPS Guide (Public)

link [MZC12, CMW13] underpinned by a precise mathematical semantics.
Our next step is their lifting to provide an FMI-based view of the behaviour
of models written in these notations. With that, we can use RoboChart and
Simulink models as FMUs in a formal model of a co-simulation as suggested
here, and use CSP and its semantics to reason about the co-simulation.

It is also relatively direct to wrap existing CSP semantics for UML state
machines [DC03, RW05] to allow the use of such models as FMUs in a co-
simulation. In this case, traditional UML modelling can be adopted.

Secondly, we can use our semantics as a specification for a co-simulation.
The work in [CWA16] provides a CSP semantics for an FMI co-simulation; it
covers not only models of the FMUs, but also a model of a master algorithm of
choice. The scenario defined by an INTO-SysML model identifies inputs and
outputs, and their connections. The traces of the FMI co-simulation model
should be allowed by the CSP semantics of the INTO-SysML model.

There is no support to establish formal connections between a simulation
and the state machine and physical models (of the robotic platform and the
environment). The SysML profile proposed here supports the development
of design models via the provision of domain-specific languages based on
familiar diagrammatic notations and facilities for clear connection of models.
Complementarily, as explained above, the semantics of the profile supports
the verification of FMI-based co-simulations. There are plans for automatic
generation of simulations of RoboChart models [CWA16]. The semantics we
propose can be used to justify the combination of these simulations with
Simulink simulations as suggested above.

4.1.5 Future work

We first suggest the development of a tool that supports the user of our
technique in automatically generating the Isabelle/UTP architectural model,
as well as a sketch of the behavioural model. The formal developer can use the
sketch as a starting point, completing it with a detailed encoding of functional
behaviours of FMUs. Secondly, elements of the refinement strategy from
abstract into concrete FMU models ought be explored for a larger spectrum
of case studies and examples, beyond the ones we presented in this report.
Both these works could be tackled by the INTO-CPS Association.

INTO-CPS multi-models are composed of individual models whose founda-
tions lie in a variety of modelling notations, each of which has its own unique
syntax, semantics, and underlying paradigmatic concepts, such as discrete

21

The INTO-CPS Guide (Public)

or continuous time. The purpose of a multi-model is to assign behaviour
to a CPS by composing the behaviours of the constituent models. Thus, in
order to provide an integrated tool chain for trustworthy CPS development,
there is a necessity for unification of these underlying semantic models to
allow consistent integration of heterogeneous system components. This will
then allow us to substantiate statements made about the multi-model with
respect to the underlying mathematical core. Hoare and He’s UTP [HH98]
has been designed as a framework in which the integration of languages,
through the common semantic domain of the alphabetised relation calculus,
can be achieved. In the next two sections, we describe how UTP is used
to provide the foundations for continuous-time modelling in the INTO-CPS
tool chain.

4.2 Discrete Event Models

VDM-RT is a real-time dialect of the VDM formal modelling language that
can be applied to the specification of discrete controllers for CPSs. VDM-RT
is object oriented, where all models are defined as classes that are instan-
tiated as objects. It supports concurrency through threading and commu-
nication between threads through shared objects. The real-time features of
the language comprise abstractions for deployment of objects to computing
units that are connected by buses, and the time taken to evaluate expres-
sions that advance a global “wall clock” to predict the computation time of
a model.

A denotational semantics exists for the core specification language [LP95],
and a structured operational semantics (SOS) exists for the real-time as-
pects [LCL13], but there is currently no full semantic description of VDM-
RT. To address this, the INTO-CPS project has established a comprehensive
denotational semantics for the VDM-RT language, including object orienta-
tion, real time, and concurrency.

We have given a UTP semantics to the language, and mechanised this in
the Isabelle/UTP theorem prover. The basis for our treatment of object
orientation is an extended calculus for classes and objects, including novel
healthiness conditions that allow handling of multiple inheritance. Our se-
mantics includes a new approach to handling static attributes, methods,
and constructors. We have mechanised Lausdahl’s operational semantics of
VDM-RT [LCL13] in Isabelle/HOL, which allowed us to gain greater insight
into the language.

22

The INTO-CPS Guide (Public)

We use UTP [HH98, CW06] to give a denotational semantics to VDM-RT.
VDM-RT is a discrete real-time language, which leads us to employ the UTP
theory of timed reactive designs as the semantic model, as embodied in the
COMPASS Modelling Language (CML) [WCF+12, Woo14, WCF+14]. We
use the constructs of CML to describe VDM-RT objects, threads, CPUs,
and busses, together with actions that encode their orchestrated execution.
In order to accomplish this, we also extend CML with a universe type for
VDM-RT, and also timed expressions that cause language constructs like
assignment to expend time during execution.

Our semantics of VDM-RT is based on a pattern commonly employed in the
INTO-CPS project to describe the discrete time component of a CPS. Such
a “cyber component” consists of one or more controller objects, each of which
owns a number of sensors and actuators through which to interact with the
physical components. The topology of such a cyber component is thus fixed
at instantiation, and there is no necessity to support dynamic object creation,
which thus favours the use of static CML processes to represent objects and
threads. Limiting ourselves to static topologies enables the application of
static analysis techniques like model checking [GRABR14, OSF14, BB15],
which typically requires a tractable state space.

4.3 Continuous Models

Modelling of continuous dynamical systems in the INTO-CPS tool chain is
provided by the Modelica and 20-sim tools, both of which are based on dif-
ferential equations. We have created a formal denotational semantics for
continuous-time models written using the Modelica language [Mod14]. The
creation of such a semantics provides firm mathematical foundations for the
language, allowing us to consider formal links between Modelica and other
languages in INTO-CPS, and enabling theorem-proving support for contin-
uous models. The Modelica language supports modelling based on ordinary
differential equations (ODEs) and differential algebraic equations (DAEs)
combined with an event handling mechanism.

We have provided a flattening process, whereby a collection of Modelica ob-
jects is converted to a pure hybrid DAE system, the core of the Modelica lan-
guage. In our work, we have compared this to the FMI representation of Hy-
brid ODEs. Once more, we have used the UTP semantic framework [HH98]
to give Modelica a formal semantics, along with other continuous time and
dynamical systems modelling languages. Our theory of differential algebraic

23

The INTO-CPS Guide (Public)

equations allows the definition of hybrid programs that mix continuous and
discrete behaviour, and also specifications regarding their behaviour.

We have mechanised our UTP theory in the established Isabelle/HOL proof
assistant [NWP02]. This allowed us to also show that our calculus satisfies
well-known laws of programming. Our combination of continuous invariants
with timed reactive designs [HDM10, CW15], forms the basis of a refinement
technique for hybrid systems.

Our hybrid combination of discrete and continuous models is known as Cy-
PhyCircus . We have defined mappings from the core languages in CyPhyCir-
cus which, as illustrated Figure 3, will also enable access to a number of static
analysis tools and techniques, such as model checking [OSF14, BB15, Beg16]
and theorem proving [FZW14, FZW16a, ZFF16]. CyPhyCircus build on the
existing work of the Circus language family [WC01, OCW07, Woo14], a suite
of formal languages that combines rich state modelling (like as in the Z spec-
ification language [WD96]) with concurrency (as in CSP [Hoa85]), with var-
ious other programming paradigms such as object orientation [CSW05] and
discrete real-time modelling [WWC13]. The intention is to have a language
that combines rich-state modelling, concurrent reactive processes, real-time
modelling, continuous variables, and differential equations. The theory of hy-
brid relations provides the foundations for such hybrid dynamical behaviour
in CyPhyCircus .

4.4 Functional Mock-up Interface

Because CPSs comprise both real-world entities and digital components, their
modelling and designing typically requires a combination of different lan-
guages and tools that adopt complementary specification paradigms. For
real-world artefacts, physics models in the form of differential equations are
the norm. Digital components, such as software controllers, are typically de-
scribed via control diagrams, state machines, and real-time programs. This
diversity of specification and design methods makes CPS challenging to study
and analyse.

Co-simulation [GTB+17a] is perhaps the de facto technique for analysing the
behaviour of CPS. It requires that models of artefacts are simulated in iso-
lation, while master algorithms control the various simulators and thereby
orchestrate the co-simulation as a whole. This raises issues of interoperability
between the master algorithm and the simulators. The Functional Mock-up
Interface (FMI) Standard [BOA+11] has been proposed to alleviate those

24

The INTO-CPS Guide (Public)

Figure 3: CyPhyCircus as the INTO-CPS lingua franca

issues, and has since been successfully used in many industrial applications.
The FMI standard prescribes how master algorithms (MA) and simulators
communicate. It does so using a bespoke API that simulators have to imple-
ment, and that can be used to devise compliant master algorithms. The API
enables master algorithms to exchange data between the components of a
co-simulation, called FMUs (Functional Mock-up Units), perform simulation
steps, and suitably deal with errors in simulators. It also allows for advanced
features such as roll-back of already performed steps.

While (co)-simulation is currently the predominant approach to validate CPS
models, the INTO-CPS approach uses a complementary technique based on
a formal model of an FMI system. Our technique formalises both the mas-
ter algorithm and the simulated FMUs, and allows for verification of their
properties.

Whereas (co)-simulation helps engineers to quickly gauge the implications
of modelling and design decisions, our formal analysis has the potential to
complement simulation with universal guarantees, both about the master al-
gorithm and co-simulated system. The former is important since simulations
depend on parameters and algorithms, and are software systems (with pos-
sible faults) in their own right. The latter is important since it is usually not
possible to run an exhaustive number of simulation scenarios as a means of

25

The INTO-CPS Guide (Public)

testing the system towards producing strong certification evidence.

For our formal modelling, we use Circus: a process algebra with added fea-
tures for supporting stateful models. It has proved adequate and useful for
modelling master algorithms [CWA16] due to its capabilities of capturing
concisely the data and control aspects of such algorithms, including data
exchange between the FMUs and their concurrent execution. Circus mod-
els can be subjected to verification techniques. These include both model-
checking approaches [GV08], refinement [CSW03], and (automatic) theorem
proving [OCW09].

We use an abstract relational model of FMI co-simulations that focuses on the
essence of the FMI computational paradigm [ZOFC18]. We have considered
a concrete reactive model of FMI that faithfully models the FMI interface as
well as master algorithms. This extends and elaborates our previous work
by providing a comprehensive Circus model that has been mechanised in the
theorem prover Isabelle/UTP [FZW16b].

We have presented a complete and final Circus model of the FMI standard for
co-simulation. To accomplish this, we have embedded the Circus language
into Isabelle/UTP, allowing us to mechanise our FMI Circus model. We
illustrated the use of our mechanisation by applying it to one of the industrial
INTO-CPS case studies (a railways system).

For proof support, we pursue a technique, based on refinement, to show com-
pliance of master algorithms with regards to the FMI standard citeFMI2014.
Unlike other approaches, such as [BBG+13a], we can profit from high-level
algebraic laws and a stepwise approach that culminates in executable code,
for both the FMUs and master algorithm.

We have shown how our work completes the general reasoning technique.
That technique proposes a refinement-based approach: we start with a dis-
crete abstraction of a co-simulation that does not need to consider the master
algorithm and is used to establish fundamental safety properties. Our work
has filled an important gap: the transformation of an abstract FMU model
into a concrete one that can be translated into code.

26

The INTO-CPS Guide (Public)

5 INTO-CPS Method Guidelines

5.1 Introduction

The INTO-CPS tool chain enables collaborative multidisciplinary model-
based design of CPSs. Although each discipline involved in a CPS engineering
enterprise has its own culture, abstractions, and approaches to problem solv-
ing, it may only be on federating them that knowledge which is otherwise
tacit in some disciplines has to be made explicit. To date, there is only
limited experience in model-based multidisciplinary design of CPSs, and so
the methods and approaches for bringing models together are only begin-
ning to emerge. This section aims to distil the methods and guidelines that
have emerged in our experience with the INTO-CPS toolchain, and to do
so in a way that helps the reader understand how best to use INTO-CPS
co-modelling technologies.

This section complements Section 6 and the Tool Chain User Manual [LBL+18]
— which give detail on how to use the features of the tool chain. Here we pro-
vide guidance on when and why these features might be used. The guidance
given here has been distilled from experience gained through pilot studies
and applications of INTO-CPS technologies to real industrial cases. These
pilot studies now appear as examples that can be opened directly from the
INTO-CPS Application, supported by descriptions in the Examples Com-
pendium [FPG+18]. Sections 5.1–5.3 provide an introduction to core INTO-
CPS terminology and the activities that INTO-CPS enables. Advanced top-
ics including traceability, design space exploration and architectural mod-
elling are outlined in Section 5.5.

5.2 Concepts and Terminology

Given the diversity of backgrounds in CPS engineering teams, it is worth
clarifying some common concepts.

5.2.1 Systems

A System is “a combination of interacting elements organized to achieve
one or more stated purposes” [WRF+15]. Any given system will have an en-
vironment , considered to be everything outside of the system. The be-
haviour exhibited by the environment is beyond the direct control of the

27

The INTO-CPS Guide (Public)

developer [BFG+12]. A system boundary is the common frontier between
a system of interest and its environment [BFG+12]. An interface is a shared
boundary between two entities, which can be defined in terms of physical and
digital interactions and flows [WRF+15].

Cyber-Physical Systems (CPSs) are “ICT systems (sensing, actuating,
computing, communication, etc.) embedded in physical objects, intercon-
nected (including through the Internet) and providing citizens and busi-
nesses with a wide range of innovative applications and services” [Tho13,
DAB+15].

Many CPSs are Systems of Systems (SoSs). An SoS is a “collection of
independent systems, integrated into a larger system that delivers unique
capabilities” [INCb].

5.2.2 Models

Amodel is a potentially partial and abstract description of a system, limited
to those components and properties of the system that pertain to the current
goal [HIL+14]. A model should be “just complex enough to describe or study
the phenomena that are relevant for our problem context” [vA10]. Models
should be abstract “in the sense that aspects of the product not relevant
to the analysis in hand are not included” [FL98]. A model “may contain
representations of the system, environment and stimuli” [FLV14]

In a model of a CPS, we describe systems with cyber, physical and network
elements. These components are often modelled in a variety of languages,
with different notations, concepts, levels of abstraction, and semantics, which
are not necessarily easily mapped one to another. We use continuous time
(CT) and discrete event (DE) models to represent physical and cyber
elements as appropriate. A CT model has state that can be changed and
observed continuously [vA10] and is described using either explicit continuous
functions of time or implicitly as a solution of differential equations. A DE
model has state that can be changed and observed only at fixed, discrete, time
intervals [vA10]. We use the term multi-model to refer to the combination
of several constituent DE and CT models.

A requirement may impose restrictions, define capabilities or identify qual-
ities of a system, and should indicate some value or use for the stakeholders
in a CPS. Requirements Engineering (RE) is the process of specifying
and documenting requirements placed upon a CPS. Requirements may be

28

The INTO-CPS Guide (Public)

considered in relation to different contexts – that is the point of view of
some system component or domain, or interested stakeholder.

A design parameter is a property of a model that can be used to af-
fect the model’s behaviour, but remains constant during a given simula-
tion [BFG+12]. A variable is feature of a model that may change during a
given simulation [BFG+12]. Non-functional properties (NFPs) pertain
to characteristics other than functional correctness. For example, reliabil-
ity, availability, safety and performance of specific functions or services are
NFPs that are quantifiable. Other NFPs may be more difficult to mea-
sure [PF10].

The activity of creating models may be referred to as modelling [FLV14]
and related terms include co-modelling and multi-modelling . A work-
flow is a sequence of activities performed to aid in modelling. A workflow
has a defined purpose, and may cover a subset of the CPS engineering devel-
opment lifecycle.

5.2.3 Architectures and Architectural Models

The term architecture has many different definitions, and range in scope
depending upon the scale of the product being ‘architected’. We use the sim-
ple definition from [PHP+14]: “an architecture defines the major elements of
a system, identifies the relationships and interactions between the elements
and takes into account process. Those elements are referred to as compo-
nents . An architecture involves both a definition of structure and behaviour.
Importantly, architectures are not static but must evolve over time to reflect
the change in a system as it evolves to meet changes to its requirements”. In a
CPS architecture, components may be either cyber components or phys-
ical components and they describe computational or physical elements,
respectively.

We consider both holistic and design architectures (Section 5.5.3). The
aim of a holistic architecture is to identify the units of functionality of the
system reflecting the terminology and structure of the domain of application.
It describes a conceptual model of these units and their interconnections,
giving a holistic view of the overall system. The design architectural model
of the system is effectively a multi-model. The INTO-CPS SysML profile
is designed to assist in the specification of CPS design architectures. It
helps the architect describe a system as a decomposition into interconnected
subsystems , each of which is an assembly of cyber and physical components

29

The INTO-CPS Guide (Public)

and possibly other subsystems. Each of these components and subsystems
can be modelled separately in a domain-specific notation and tool.

Evolution refers to the ability of a system to benefit from a varying num-
ber of alternative system components and relations, as well as its ability to
gain from the adjustments of the individual components’ capabilities over
time.

There are many methods of describing architectures. An architecture di-
agram is a symbolic representation of architectural information contained
in a model. An architectural framework is a “defined set of viewpoints
and an ontology” and “is used to structure an architecture from the point
of view of a specific industry, stakeholder role set, or organisation. In the
application of an architecture framework, an architectural view is a “work
product (for example an architecture diagram) expressing the architecture of
a system from the perspective of specific system concerns” [PHP+14].

5.2.4 Co-simulation

Co-simulation refers to the simultaneous simulation of individual models,
which together make up a larger system of interest, for the purpose of ob-
taining a simulation of the larger system. A co-simulation is performed by a
co-simulation orchestration engine . This engine is responsible for ini-
tialising the individual simulations as needed; for selecting correct time step
sizes such that each constituent model can be simulated successfully for that
duration, thus preventing time drift between the constituent simulations; for
asking each individual simulation to perform a simulation step; and for syn-
chronising information between models as needed after each step. The result
of one such round of simulations is a single simulation step for the complete
multi-model of the system of interest.

As an example, consider a very abstract model of a nuclear power plant. This
consists of a nuclear reactor core, a controller for the reactor, a water and
steam distribution system, a steam-driven turbine and a standard electrical
generator. All these individual components can be modelled separately and
simulated, but when composed into a model of a nuclear power plant, the
outputs of some become the inputs of others. In a co-simulation, outputs
are matched to inputs and each component is simulated one step at a time
in such a way that when each model has performed its simulation step, the
overall result is a simulation step of the complete power plant model. Once
the correct information is exchanged between the constituent models, the

30

The INTO-CPS Guide (Public)

process repeats.

5.2.5 Design Space Exploration

During the process of developing a CPS, either starting from a completely
blank canvas or constructing a new system from models of existing compo-
nents, the architects will encounter many design decisions that shape the
final product. The activity of investigating and gathering data about the
merits of the different choices available is termed Design Space Explo-
ration (DSE). Some of the choices the designer will face could be described
as being the selection of parameters for specific components of the design,
such as the exact position of a sensor, the diameter of wheels or the param-
eters affecting a control algorithm. Such parameters are variable to some
degree and the selection of their value will affect the values of objectives by
which a design will be measured. In these cases it is desirable to explore the
different values each parameter may take and also different combinations of
these parameter values if there are more than one parameter, to find a set of
designs that best meets its objectives. However, since the size of the design
space is the product of the number of parameters and the number of values
each may adopt, it is often impractical to consider performing simulations of
all parameter combinations or to manually assess each design.

The purpose of an automated DSE tool is to help manage the exploration
of the design space, and it separates this problem into three distinct parts:
the search algorithm, obtaining objective values and ranking the designs
according to those objectives. The simplest of all search algorithms is the
exhaustive search, and this algorithm will methodically move through each
design, performing a simulation using each and every one. This is termed
an open loop method, as the simulation results are not considered by the
algorithm at all. Other algorithms, such as a genetic search, where an initial
set of randomly generated individuals are bred to produce increasingly good
results, are closed loop methods. This means that the choice of next design
to be simulated is driven by the results of previous simulations.

Once a simulation has been performed, there are two steps required to close
the loop. The first is to analyse the raw results output by the simulation to
determine the value for each of the objectives by which the simulations are
to be judged. Such objective values could simply be the maximum power
consumed by a component or the total distance traveled by an object, but
they could also be more complex measures, such as the proportion of time
a device was operating in the correct mode given some conditions. As well

31

The INTO-CPS Guide (Public)

as numerical objectives, there can also be constraints on the system that
are either passed or failed. Such constraints could be numeric, such as the
maximum power that a substation must never exceed, or they could be based
on temporal logic to check that undesirable events do not occur, such as all
the lights at a road junction not being green at the same time.

The final step in a closed loop is to rank the designs according to how well
each performs. The ranking may be trivial, such as in a search for a design
that minimises the total amount of energy used, or it may be more complex
if there are multiple objectives to optimise and trade off. Such ranking func-
tions can take the form of an equation that returns a score for each design,
where the designs with the highest/lowest scores are considered the best.
Alternatively, if the relationship between the desired objectives is not well
understood, then a Pareto approach can be taken to ranking, where designs
are allocated to ranks of designs that are indistinguishable from each other, in
that each represents an optimum, but there exist different tradeoffs between
the objective values.

5.2.6 Model-Based Test Automation

The core fragment of test automation activities is a model of the desired
system behaviour, which can be expressed in SysML. This test model in-
duces a transition relation, which describes a collection of execution paths
through the system, where a path is considered a sequence of timed data
vectors (containing internal data, inputs and outputs). The purpose of a test
automation tool is to extract a subset of these paths from the test model
and turn these paths into test cases, respectively test procedures. The test
procedures then compare the behaviour of the actual system-under-test to
the path, and produce warnings once discrepancies are observed.

5.2.7 Code Generation

Code generation refers to the translation of a modelling language to a com-
mon programming language. This is commonly employed in control engineer-
ing, where a controller is modelled and validated using a tool such as 20-sim,
and finally translated into source code to be compiled for some embedded
execution platform, which is its final destination.

The relationship that must be maintained between the source model and
translated program must be one of refinement, in the sense that the trans-

32

The INTO-CPS Guide (Public)

lated program must not do anything that is not captured by the original
model. This must be considered when translating models written in high-
level specification languages, such as VDM. The purpose of such languages
is to allow the specification of several equivalent implementations. When
a model written in such a language is translated to code, one such imple-
mentation is essentially chosen. In the process, any non-determinism in the
specification, the specification technique that allows a choice of implemen-
tations, must be resolved. Usually this choice is made very simple by re-
stricting the modelling language to an executable subset, such that no such
non-determinism is allowed in the model. This restricts the choice of imple-
mentations to very few, often one, which is the one into which the model is
translated via code generation.

5.3 Activities Enabled by INTO-CPS

The following activities are all enabled by one or more of the INTO-CPS
technologies. They are grouped into broad categories and include both ex-
isting, embedded systems activities and activities enabled by INTO-CPS,
since INTO-CPS extends traditional embedded systems design capabilities
towards CPS design. The choice of granularity for defining these activities
naturally affects the size of such a list. The level chosen is instructive for
describing workflows, but one that does not make the described workflows
overly long.

In the following descriptions (and corresponding summary in Table 2), we
identify the tools that support the activities, where applicable, using the
following icons:

The INTO-CPS Application, COE and its extensions.
Modelio.
The Overture tool.
RT-Tester.
OpenModelica.
20-sim.

Descriptions of these tools can be found in Section 6 and in appendix B they
are explained in more detail. Those activities in italics can be recorded by the
traceability features of INTO-CPS, which are described in Section 5.5.1.

Requirements and Traceability Writing Design Notes () includes
documentation about what has been done during a design, why a decision

33

The INTO-CPS Guide (Public)

was made and so on. Requirements () includes requirements gathering and
analysis. Validation () is any form of validation of a design or implemen-
tation against its required behaviour.

Architectural Modelling INTO-CPS primarily supports architectural
modelling in SysML. Holistic Architectural Modelling () and Design Ar-
chitectural Modelling () are described in Section 5.5.3. The former focuses
on a domain-specific view, whereas the latter targets multi-modelling using
a special SysML profile. The Export Model Descriptions () activity indi-
cated passing component descriptions from the Design Architectural Model
to other modelling tools.

Modelling The Import Model Description () activity means tak-
ing a component interface description from the Design Architectural Model
into another modelling tool. Cyber Modelling () means capturing a “cyber”
component of the system, e.g. using a formalism/tool such as VDM/Over-
ture. Physical Modelling () means capturing the “physical” component
of the system, e.g. in 20-sim or OpenModelica. Collectively, these can be
referred to as Simulation Modelling () to distinguish from other
forms, such as Architectural Modelling (). Co-modelling () means pro-
ducing a system model with one DE and one CT part, e.g. in Crescendo.
Multi-modelling () means producing a system model with multiple DE
or CT parts with several tools.

Design Supervisory Control Design means designing some control logic
that deals with high-level such as modal behaviour or error detection and
recovery. Low Level Control Design means designing control loops that con-
trol physical processes, e.g. PID control. Software Design is the activity of
designing any form of software (whether or not modelling is used). Hardware
Design means designing physical components (whether or not modelling is
used).

Analysis In INTO-CPS, the RT-Tester tool enables the activities of Model
Checking (), Creating Tests () and creating a Test Oracle () FMU.
The Create a Configuration () activity means preparing a multi-model for
co-simulation. The Define Design Space Exploration Configurations ()
activity means preparing a multi-model for multiple simulations. Export
FMU () means to generate an FMU from a model of a component.
Co-simulation () means simulating a co-model, e.g. using Crescendo
baseline technology or the INTO-CPS COE called Maestro.

34

The INTO-CPS Guide (Public)

Prototyping Manual Code Writing means creating code for some cyber
component by hand. Generate Code () means to automatically
create code from a model of a cyber component. Hardware-in-the-Loop (HiL)
Simulation () and Software-in-the-Loop (HiL) Simulation () mean
simulating a multi-model with one or more of the models replaced by real
code or hardware.

5.4 Configuring Multi-Models

As discussed in Section 5.2, a multi-model is a collection of FMUs with a
configuration file that: defines instances of those FMUs, specifies connec-
tions between the inputs/outputs of the FMU instances, defines values for
design parameters of the FMU instances, and defines other simulation set-
tings such as a start, end time, and Master algorithm settings. As seen above,
creating a multi-model is a key part of using the INTO-CPS tool chain as
it is a pre-requisite for many of the analysis techniques that INTO-CPS can
perform.

The INTO-CPS Application supports a project, a view of a folder containing
source models, generated FMUs, and configuration files for co-simulation
(multi-models) as well as configuration files for other analyses (design space
exploration, model checking, test automation). Multi-model configurations
can be created in three ways:

1. Created manually using the GUI of the INTO-CPS Application; or
2. Generated from a SysML model created in Modelio; or
3. Created manually by editing JSON configuration files.

All three approaches produce the same configuration file, so the choice of
which to use depends on the engineer’s background. Those comfortable with
SysML may find it best to follow the SysML route, but this is not required.
So those unfamiliar with SysML can use the Application directly.

5.5 An Overview of Advanced Methods

We recommend that new users follow the first tutorial7 to experience the
INTO-CPS Application, and then import one or two examples from the Ex-
amples Compendium [FPG+18] and interact with them. The more advanced

7Updated tutorials supporting newer versions of the toolchain can be found at https:
//github.com/INTO-CPS-Association/training/releases.

35

https://github.com/INTO-CPS-Association/training/releases
https://github.com/INTO-CPS-Association/training/releases

The INTO-CPS Guide (Public)

Table 2: Activities in existing embedded systems design workflows or en-
hanced INTO-CPS workflows.

Requirements Engineering
Stakeholder Documents
Requirement Definition
Validation
Architectural Modelling
Holistic Architectural Modelling
Design Architectural Modelling
Export Model Descriptions
Modelling
Import a Model Description
Physical Modelling (Simulation Modelling)
Cyber Modelling (Simulation Modelling)
Co-modelling
Multi-modelling
Design
Supervisory Controller Design
Low Level Controller Design
Software Design
Hardware Design
Analysis
Create Tests
Model Checking
Create Test Oracle
Create a Configuration
Define Design Space Exploration Configurations
Export FMU
Co-simulation
Prototyping
Generate Code
Hardware-in-the-Loop (HiL) Simulation
Software-in-the-Loop (SiL) Simulation
Manual Code Writing

36

The INTO-CPS Guide (Public)

modelling and analysis methods outlined in this section are described in
greater depth in the INTO-CPS Methods Guidelines [PFG+18].

5.5.1 Traceability

The technologies in the INTO-CPS tool chain are able to capture traceabil-
ity information automatically as activities are performed using the various
elements of the tool chain. This includes information about who created or
modified an artefact (model, simulation result etc.), and which requirements
it is linked to. The traceability features of the INTO-CPS tool are described
in depth in [PFG+18] and [LBL+18].

The INTO-CPS tool chain builds a graph of traceability relations, as there
can be multiple relationships between different artefacts. The graph is how-
ever tree-like in the sense that there must be some root node(s) to trace from
or back to. These root nodes are requirements. The traceability graph is
initialised by using Modelio from the beginning of the development process.
The traceability graph is then subsequently updated by the baseline tools as
models are created from the model descriptions, FMUs are exported and so
on, and co-simulation runs and results will be recorded by the INTO-CPS
Application. By performing the required manual input of requirements and
links to SysML elements, it is then possible to automatically trace forward
to models, FMUs and simulation results, and to trace backwards from these
artefacts to individual requirements.

Once a graph has been built, queries can be executed over it to analyse
forward traceability (from requirements to entities); backwards traceability
(from FMU to requirements); finding sources and sinks for a simulation;
assessing coverage such as finding requirements without positive simulation
results; and evaluating user impact, such as finding all artefacts influenced
by a given user.

5.5.2 Requirements Engineering

Requirements placed on a CPS may, for example, impose restrictions, de-
fine system capabilities or identify qualities of a system. In order to use
machine-assisted traceability support, requirements need to be recorded ex-
plicitly. In the INTO-CPS Methods Guidelines [PFG+18], we describe one
possible approach to Requirements Engineering (RE) for CPS, adapting an
approach already piloted on systems-of-systems (SoSs). This approach is not

37

The INTO-CPS Guide (Public)

mandatory, and in general RE processes and tools vary widely across organ-
isations and domains. In the approach, we propose a collection of views that
could be represented as diagrams in SysML, or could equally be represented
in other tools where these are already used (e.g., Excel). Examples of views
include a Source Element View, which defines a collection of source mate-
rials from which requirements are derived, a Requirement Description View
which is used to define the requirements of a system and forms the core of
the requirement definition, and the Context Definition View which is used to
identify interested stakeholders and points of context in the system develop-
ment, including customers, suppliers and system engineers themselves. The
full RE process is a disciplined approach involving identifying and recording
source elements, system-level functional and non-functional requirements, an
initial system structure which identified cyber and physical elements), and
relevant contexts in context definition views. Requirements may then be
traced using INTO-CPS tool chain models and results.

5.5.3 SysML and Multi-modelling

Standard SysML can be used as part of a development process to build a
model of a system and link elements to requirements. The INTO-CPS tool
chain also provides an extended SysML profile that helps users to config-
ure multi-models for co-simulation and configure DSE. The multi-modelling
SysML profile defines two diagrams for configuring a co-simulation. The
INTO-CPS Application can run a co-simulation based on a configuration file
which describes the FMUs, their parameters and connections between them.
The design space exploration (DSE) SysML profile is an addition to the multi-
modelling SysML profile described above. As with single co-simulation, the
INTO-CPS Application can run a DSE based on a configuration file. Alter-
natively, a configuration can be generated by Modelio, from a set of diagrams
defined in the profile. Five diagram types are used to define the objectives for
a DSE and their instantiations, define the parameters that will be changed
on each co-simulation in a DSE and their instantiations, and the objectives
to be used for ranking competing designs.

Holistic and Design Architectural Modelling A system architecture
defines the major components of a system, and their relationships, behaviour
and interactions. A model of the architecture is potentially partial (repre-
senting some or all of the system) and abstract, limited to those elements per-
tinent to the modelling goal. In CPS engineering, this goal may include un-
derstanding the system in terms of the application domain (a holistic model),

38

The INTO-CPS Guide (Public)

or capturing the system components in a way that targets multi-modelling
(a design model).

The diagrams in the two profiles described above divide architectural models
into subsystems composed of cyber or physical components. Defining an
architecture this way may not be the best approach when designing a system
ab initio, with systems comprising entities across different domains requiring
diverse domain expertise. The Methods Guidelines [PFG+18] discuss and
exemplify both holistic and design architectural modelling approaches, and
provides some commentary and guidance on how to model in a way which is
natural for domain experts, and how to move from holistic to design models
when multi-modelling.

Representing Non-Design Elements in SysML Using the INTO-CPS
tool chain, we generate co-simulation configurations using an architectural
model defined with the INTO-SysML profile. This model defines the struc-
ture of a system in terms of the composition of its components and their
connections. There are however circumstances where elements in the multi-
model are not part of the design of the final system, for example where an
FMU is used purely for visualisation. This FMU must be connected to the
system components, however is not itself a system component. This is also
true when considering the environment of the system. The Methods Guide-
lines [PFG+18] present an example of the use of these extensions.

5.5.4 A ‘DE-first’ Approach to Developing Multi-models

After carrying out requirements engineering (RE), and design architectural
modelling in SysML the engineering team should have Architecture Struc-
ture Diagrams (ASDs) defining the composition of components to be realised
as FMUs in cyber or physical formalisms, along with model descriptions ex-
ported for each component, and some Connections Diagrams (CDs) that
will be used ot configure a multi-model. The next step is to generate a
multi-model configuration in the INTO-CPS Application and populate it
with FMUs, then run a first co-simulation. This however requires the source
models for each FMU to be ready. If they already exist this is easy, how-
ever they may not exist if this is a new design. In order to generate these
models, the model descriptions for each component can be passed to relevant
engineering teams to build the models, then FMUs can be passed back to be
integrated.

It can be useful however to create and test simple, abstract FMUs first (or

39

The INTO-CPS Guide (Public)

in parallel), then replace these with higher-fidelity FMUs as the models be-
come available. This allows the composition of the multi-model to be checked
early, and these simple FMUs can be reused for regression testing. This ap-
proach also mitigates the problem of modelling teams working at different
rates. Where these simple FMUs are built within the DE formalism (such
as VDM), this is called a DE-first approach. This approach is particularly
appropriate where complex DE control behaviours —such as supervisory con-
trol or modal behaviours— are identified as a priority or where the experience
of the modelling team is primarily in the DE domain [FLV14].

5.5.5 Modelling Networks with VDM in Multi-models

When modelling and designing distributed controllers, it is necessary to
model communications between controllers as well. While controller FMUs
can be connected directly to each other through for co-simulation, this quickly
becomes unwieldy due to the number of connections increasing exponentially.
We suggest employing an ‘ether’ pattern in which a representation of an ab-
stract communications medium is introduced [FLV14]. In the INTO-CPS
setting, the ether is an FMU that is connected to each controller that han-
dles message-passing between them. This reduces the number of connections
needed, particularly for large numbers of controllers such as swarms. In the
Methods Guidelines [PFG+18], we describe how to pass messages between
VDM FMUs using string types, how the ether class works, some of the conse-
quences of using the ether pattern, and finally some extensions for providing
quality of service (QoS) guarantees.

5.5.6 Design Space Exploration

Our guidelines for DSE over multi-models of CPSs are intended to (a) support
decision management by helping engineers to articulate clearly the param-
eters, objectives and metrics of a DSE analysis; and (b) enable the tuning
of DSE methods for given domains and systems of interest. The Methods
Guidelines [PFG+18] describe a SysML profile for systematically describing
DSE experiments by defining parameters, objectives and rankings.

DSE is performed in the DSE tool (see the INTO-CPS User Manual [LBL+18])
by processing the DSE configuration using scripts that contain the required
algorithms. The main scripts contain the search algorithm that determines
which parameters to use in each simulation, the simplest of these is the

40

The INTO-CPS Guide (Public)

exhaustive algorithm that methodically runs through all combinations of pa-
rameters and runs a simulation of each. The log files produced by each
simulation are then processed by other scripts to obtain the objective values
defined in the previous section. Finally, the objective values are used by a
ranking script to place all the simulation results into a partial order according
to the defined ranking. The ranking information is used to produce tabular
and graphical results that may be used to support decisions regarding design
choices and directions.

An Approach to Effective DSE Given a “designed” design space using
the method detailed above, we use the INTO-CPS Tool Chain to simulate
each design alternative. Whilst this approach is acceptable on small-scale
studies, it quickly becomes infeasible as the design space grows. Inspired
by processes found in nature, genetic algorithms “breed” new generations of
optimal CPS designs from the previous generation’s best candidates. This
mimics the concept of survival of the fittest in Darwinian evolution. The
approach is detailed in the Methods Guidelines [PFG+18]. An alternative to
the genetic search, which is automated, is to use repeated exhaustive searches
to home in on better regions of the design space. In this approach the user
would plan to perform multiple DSE experiments, each using some portion
of their total simulation budget. The first DSE experiment is used to cover
the whole range of the design space, but not including all values for each
parameter. In this way the first DSE is used to locate regions of interest
within the design space. The regions of interest are areas of the design
space that produced the better designs according to the ranking results,
with the bounds of the ’area’ defined by the parameter values that produced
good results. The user then divides up their remaining simulation budget
between the one or more areas of interest and perform further DSE on those
areas.

41

The INTO-CPS Guide (Public)

6 The INTO-CPS Tool Chain

This section discusses the interconnectivity of the different tools, and how
the tools fit into the workflows and tasks that are covered by INTO-CPS.
In particular, this section focuses on the features that were added during
the INTO-CPS project, and in the framework of the INTO-CPS association.
This section does not describe all the tools in detail (here, the reader is
referred to the different manuals, and to the User Manual [BLL+17] and to
Appendix B). The main concepts of the tool-chain are discussed above in
Section 5.2.

An overview of the different tools that form the tool-chain of the INTO-CPS
association, is given below in Figure 4, where the red boxes indicate the
different sections of this chapter.

Figure 4: Overview of the different tools and their arrangement in a tool-
chain.

6.1 Modelio

Modelio is an open-source modelling environment for various formalisms with
many interfaces to import and export models. In the context of INTO-CPS,
the support for SysML modelling is of primary importance, while Modelio
can be extended with a range of modules to enable more modelling languages.

42

The INTO-CPS Guide (Public)

In the terminology of the methods guidelines (e.g. [PFG+18]), Modelio is a
tool for the architectural modelling and for requirements management.

During the INTO-CPS project, a SysML profile was created, which is cur-
rently available as a module for Modelio 3.4 and 3.68. This INTO-CPS
SysML profile extends Modelio with several functionalities that described in
detail elsewhere [BQ15, BQ16, Bro17]. Here, only those parts of the INTO-
CPS SysML profile are discussed that add features for interconnectivity in
the tool-chain.

To support the FMI multi-modelling approach, ModelDescription.xml
files can now be imported into, and exported from a SysML Architectural
Modelling diagram. Importing ModelDescription.xml files creates a
SysML block with the corresponding flow ports and attributes, exporting
them allows import in other modelling tools, such as those described below
in Section 6.2.

The Connections Diagram describes the signal flow between the different
SysML blocks, which can each correspond to one FMU. Using the INTO-CPS
SysML profile, the Connections Diagram can be exported to an intermediary
JSON format, which can then be imported by the INTO-CPS Application,
to create a new Multi-Model.

Diagrams for handling of Design Space Exploration (DSE) were created for
Modelio, also included in the INTO-CPS SysML profile. These diagrams al-
low connection of parameters with signals, definition of objectives for a DSE,
connection of signals with objectives, and ranking of results. Using these di-
agrams, a complete DSE configuration can be exported from Modelio.

Behavioural models that are designed in Modelio as state machines can be
exported as .xmi files, so that they can be imported to the RT Tester
tool.

Furthermore, Modelio allows Requirements management, and supports trace-
ability in the context of INTO-CPS. More details about Modelio can be found
in Section B.1.

6.2 Modelling tools

At the core of the tool-chain are several modelling tools that describe a sys-
tem or a sub-system in a specific formalism, and perform calculations to un-

8see http://forge.modelio.org/projects/intocps

43

http://forge.modelio.org/projects/intocps

The INTO-CPS Guide (Public)

derstand the dynamic behaviour of the (sub-)system. While the formalisms
or application areas can be vastly different, the modelling tools share some
common features, which are summarised in this section.

20-sim is a commercial tool for modelling and simulation of mechatronic
systems. Together with the related software, 20-sim 4C, Hardware-in-the-
Loop simulations can be performed (http://www.20sim.com/). This is
described further in Section B.3.

OpenModelica is an open-source environment which is based on the
Modelica language. It features numerous free libraries to easily model sys-
tems from different domains (https://openmodelica.org/). This is
described further in Section B.4.

Overture is an open-source tool that supports the modelling method The
Vienna Development Method (VDM), which is a formal method to describe
computing systems (http://overturetool.org/). This is described
further in Section B.2.

4Diac is an open-source tool for distributed process measurement and con-
trol systems based on the IEC 61499 standard9. This is described further in
Section B.6.

AutoFocus3 is an open-source model based tool to develop embedded
software systems. https://af3.fortiss.org/

ABS is a language for Abstract Behavioural Specification, which combines
implementation-level specifications with verifiability, high-level design with
executability, and formal semantics with practical usability. ABS is a concur-
rent, object-oriented, modelling language that features functional data-types.
http://abs-models.org/

Most modelling tools support the same functions in the context of INTO-
CPS. A ModelDescription.xml file (e.g. one that is automatically cre-
ated from Modelio, see previous section) can be imported to create a skeleton
model with the input and output signals and exposed parameters. After the
actual modelling work is done, the model can be exported as Functional
Mock-up Unit (FMU), in accordance with the FMI 2.0 for Co-Simulation
standard. This FMU can either contain all the necessary models and solvers,

9See https://www.eclipse.org/4diac/.

44

http://www.20sim.com/
https://openmodelica.org/
http://overturetool.org/
https://af3.fortiss.org/
http://abs-models.org/
https://www.eclipse.org/4diac/

The INTO-CPS Guide (Public)

so that is a self-contained model (also called stand alone), or it contains li-
braries which call a simulation tool to execute the simulation. The latter case
is called a tool wrapper FMU. Furthermore, the different steps of importing,
saving and exporting generate traces which are sent to the traceability engine
of the INTO-CPS Application. The following table summarises the status of
the different tools at the time of writing of this document.

To
ol

M
D
.x
m
li
m
po

rt

F
M
U

im
po

rt

F
M
U

ex
po

rt
(s
ta
nd

al
on

e)

F
M
U

ex
po

rt
(t
oo

lw
ra
pp

er
)

Tr
ac
ea
bi
lit
y

20-sim yes yes no yes yes
OpenModelica yes yes yes no yes
Overture yes yes yes yes yes
4diac no no yes no no
AutoFocus 3 no under

develop-
ment

no no no

ABS no no no planned no

Table 3: Functionalities of the modelling tools

6.3 RT Tester

In the framework of INTO-CPS, the RT Tester tool suite (see https://
www.verified.de/products/rt-tester/) is extended with mainly
two objectives: Integration of Test-Automation and of Model Checking in
the INTO-CPS tool-chain. Both functions are integrated into the INTO-
CPS application, and both support traceability. This is described further in
Section B.5.

45

https://www.verified.de/products/rt-tester/
https://www.verified.de/products/rt-tester/

The INTO-CPS Guide (Public)

6.3.1 Test Automation

Test Automation within INTO-CPS uses the RT Tester tools to generate,
perform and analyse tests, based on Co-simulation of a system. The Test
Automation functionalities are integrated into the INTO-CPS Application.
The behavioural model can be generated in Modelio, and exported as .xmi
file, which in turn can be read by RT Tester. After the test is created in
RT Tester, the test procedure can be cast into an FMU file. Together with
a Co-Simulation scenario, and using the COE, the test procedure is used to
run a test project. More information on Test Automation in INTO-CPS can
be found in [BC+17].

6.3.2 Model Checking

Model checking in INTO-CPS is used to verify system properties of multi-
models, consisting of continuous-time (CT) and discrete-event (DE) models.
Similar to the Test Automation features, Model Checking is based on the
RT Tester tool suite. From a tool-chain perspective, Model Checking is
integrated in the INTO-CPS Application, which allows the complete con-
figuration, execution and analysis of a Model Checking experiment. More
information on Model Checking in INTO-CPS can be found in [BH17].

6.4 3D animation

The 3D animation FMU allows visualisation of the simulation. It is based
on the Unity engine (see https://unity3d.com), and extends it by ex-
porting the scenario and the 3D rendering as a FMU [FLG17]. The Modelio
SysML profile (see Section 6.1) takes the visualisation FMU into account.
The 3D animation FMU also supports Virtual Reality (VR) headsets. The
source code for this is available for the members of the INTO-CPS Associa-
tion in a special SVN.

6.5 The INTO-CPS Application

The INTO-CPS Application is the central tool to integrate the different tools
and artefacts, to configure and run simulations, manage results, and more. It
allows configuration and execution of DSE scenarios (which can be imported
from Modelio), and is a front-end for Model-checking and Test automation,

46

https://unity3d.com

The INTO-CPS Guide (Public)

by using the RT Tester tool (see Section 6.3). Furthermore, traceability data
can be viewed in the Application, either in an expert view, using the Neo4J
visualisation10, or by pre-configured queries.

10https://neo4j.com/

47

https://neo4j.com/

The INTO-CPS Guide (Public)

7 The INTO-CPS Industrial Case Studies

The INTO-CPS technologies have been applied in a series of industry-led case
studies to date. They have each demonstrated different benefits, as might be
expected given the different character of the multidisciplinary engineering ac-
tivities undertaken in each company. Nonetheless, certain aspects of the tool
chain have been beneficial in all cases. We thus argue that these are the most
broadly applicable benefits of INTO-CPS and the ones that can most suc-
cessfully be transferred to other domains (fig. 5). Modelling and simulation
is heavily used in industry today, to evaluate performance and robustness of
the system with regards to requirements. Aspects such as simulation speed,
and model fidelity are of high importance. Going beyond model-based design
and single model simulation, co-simulation enables the analysis of physical
interactions of systems that were previously not captured, due to the dif-
ferent domains at which the physics were modelled. Multi-physics analysis
enables early analysis and detection of issues that were only uncovered at the
physical prototyping stage, thus saving time and money.

The use of SysML modelling with the INTO-CPS profile has been valuable
in the majority of the industrial case studies that have been conducted so
far. It has provided a means of delivering common documentation of system
structure (particularly valuable for larger teams). It has also enhanced com-
munication in each case study project and across the disciplines and tools
used. The connection with the simulation tools and the COE via the ex-
port of Model Description and Co-Simulation Configuration adds even more
value to the SysML model. DSE has proved valuable as a way to sweep
parameters and automate co-simulations, leading to faster prototyping (and
lessening the need for physical prototypes) and a better understanding of the
complex interactions between the system parameters.

To commercial entities, the 3D visualisation element has proved valuable as
a marketing and sales tool. It also greatly enhances the user experience when
analysing the models. These benefits are in addition to engineering benefits
which can be gained for certain case studies, where the visual aspects of the
problem are of interest and can be studied using the 3D visualisation. This
is not the case for all CPS problems, but any CPS company can benefit from
the 3D capabilities for marketing purposes, which are of high importance to
any business. More generally, one of the greater benefits of the INTO-CPS
tool chain was the ability to reuse models, including existing legacy models
for new purposes. The broad tool compatibility (including tools outside the
tool chain, this attesting its openness) increased the reuse even more. The

48

The INTO-CPS Guide (Public)

Figure 5: INTO-CPS Industrial Case studies

tool chain is also fully compliant with the FMI standard which increases the
value of models developed with the INTO-CPS tool chain, as they can be
reused further in the future. Finally, the baseline tools of INTO-CPS were
all made compatible and tested with industry-grade and open source tools
through the FMI standard, thus opening new possibilities for the tools and
their users.

7.1 The Automotive Case Study

This section presents a case study carried out by TWT Innovation from
Germany that develops functions for vehicles, in particular electric vehicles
using the INTO-CPS technology. Its goal is to create an assistant system for
estimating the range of an electric vehicle, based on a vehicle model and real
data from the environment, such as route topology or weather. Furthermore,
the range estimation is dynamic, as it takes changes in the initial assumptions
into account, and influences the vehicle behaviour accordingly.

The case study can be considered a CPS because it contains local intelli-
gence and autonomy in the vehicle. This is assisted by information about
its environment typically derived from a cloud context (here, information on
weather and traffic/route) and the logic depends upon the physical dynamics
of the electric vehicle (Fig. 6).

A part of the system is transferred seamlessly from a simulation model to
real hardware (here, as Raspberry Pi) and simulated with the remainder of
the system. Since the case study was developed as part of the INTO-CPS
project [FGL+15, LFW+16a, LTL+16, LFW+16b, LFW+17], one aim was to

49

The INTO-CPS Guide (Public)

Figure 6: Automotive case study using INTO-CPS: Velocity and altitude
profile for a route of 35 km in the vicinity of Stuttgart. The route consists
here of a country road only, and thus the velocity is stable at 70 km/h, while
the altitude varies between 450m and 850m above sea level.

evaluate the INTO-CPS tools and methods. Here this is in particular the Co-
simulation orchestration engine (COE), which is a FMI 2.0 compliant master
algorithm that allows coupling of continuous-time (CT) and discrete event
(DE) models in a Co-Simulation setup [4,5]. furthermore, the system was
modelled in SysML, using the CPS-extension of the Modelio tools [BBQS15].
The models themselves were created using Matlab11, 20-sim12 [Kle06], C++
and Overture13 [LBF+10].

7.2 The Agricultural Case Study

The focus of the case study is the development of an agricultural field robot
called Robotti developed by the Danish company called AgroIntelli using the
INTO-CPS technology. Models of the machine dynamics and controllers have

11https://www.mathworks.com/products/matlab.html
12http://www.20sim.com/
13http://overturetool.org/

50

https://www.mathworks.com/products/matlab.html
http://www.20sim.com/
http://overturetool.org/

The INTO-CPS Guide (Public)

been developed using the baseline tools and co-simulated using the COE.
DSE has been applied in the development and assessment of the steering
controller which is crucial to the robot’s performance. Several scenarios of
different steering controller configurations are simulated using the COE and
the DSE feature is applied to estimate the optimal controller configuration
of the Robotti. The influence of the controller parameters are shown in
Fig. 7 where the six simulated trajectories are shown corresponding to six
combinations of two controller parameters. The dashed line represents the
desired route and the blue line represents the simulated trajectory of the
Robot. Additionally, the 3D FMU feature has been applied to visualise
the machine based on the models of the kinematics and dynamics. Related
Publications can be found at [FLG17, FBG+18].

Figure 7: Simulated trajectories of the six controller configurations (a,b,...,f)

7.3 The Building HVAC Case Study

A case study led by United Technologies (their research centre in Ireland)
has focused on modelling and analysis of energy and comfort for Heating,
Ventilation and Air Conditioning (HVAC) systems that control the temper-
ature of connected areas inside building premises. The case study models
various concepts shown in Fig. 8 such as: a) Fan Coil Unit (FCU) and con-
trol; b) supervision and fault detection of FCUs; c) communication between
master-slave FCUs; d) communication between FCUs and supervisor; e) Air

51

The INTO-CPS Guide (Public)

Handling Unit (AHU) and control; f) chiller load and control; g) physical
rooms and air flow; h) water and air pipe connections.

The functionality of the HVAC system is to regulate operation of various de-
vices to ensure user comfort. User inputs are taken into account from room
and zone thermostats and are compared with current Room Air Tempera-
ture (RAT) sensed by the FCUs, triggering certain action on the FCUs to
reach the desired temperature by a) regulating the air flow using its fan, b)
regulating the water pipe valves to control the cooled water into the coil, c)
synchronising with the supervisor to coordinate with the rest of the FCUs.
Fresh air is provided to the FCUs by the AHU and cooled by the Chiller.

Modelling and simulation was heavily used to evaluate performance and ro-
bustness of the system with regards to requirements. Aspects such as sim-
ulation speed, and model fidelity were of high importance. Going beyond
model-based design and single model simulation, co-simulation enabled the
analysis of physical interactions of systems that were previously not captured,
due to the different domains at which the physics were modelled. Multi-
physics analysis enabled early analysis and detection of issues that were only
uncovered at the physical prototyping stage, thus saving time and money.
The 3D visualisation feature is particularly appealing for several spatial ex-
ploration of HVAC’s effectiveness, as well as for engaging with non-technical
stakeholders and demonstrating results. In addition, certain industrial do-
mains operate in context where the visual aspect of the 3D co-simulation
can bring genuine insights. Other capabilities of the INTO-CPS tool chain
such as test automation and verification are not particularly in demand for
HVAC systems, but are highly valuable for aerospace applications. Related
Publications can be found at [FGP+16, CBM+17].

7.4 The Railway Case Study

In railway signalling, an interlocking is an arrangement of signal appara-
tus that prevents conflicting movements of trains through an arrangement
of tracks, junctions and crossings. Usually, interlocking is in charge of a
complete railways or tram line, computing the status of actuators (switches
and signals) based on signalling safety rules that are encoded as “binary equa-
tions” as shown in Figure 2, usually managing 180.000 equations that have to
be recalculated several times per second. These equations compute the com-
mands to be issued to track-side devices: they encode the safety behaviour
that enable trains to move from one position to another through routes that
are allocated and then released. Currently, there are attempts to find the

52

The INTO-CPS Guide (Public)

Figure 8: INTO-CPS Co-Simulation Results for Room temperature in build-
ing zones

right trade-off between efficiency of an interlocking system (availability of
routes, trains’ delays and cost of interlocking system) and safety (collision
avoidance, derailment prevention, availability and efficiency of emergency
system).

53

The INTO-CPS Guide (Public)

In this case study led by ClearSy from France, an Interlocking system was
considered that controls a part of a tramway line, including two platforms
and a bidirectional track (between SW5 and SW2). It involves eleven track
circuits; sensors that detect the absence of a train on a railway track; three
commands that can accept several positions and are activated by the train;
five mechanical switches that allow changing direction (those switches have to
be set accordingly to the route chosen) and three light signals, red when the
train is not allowed on the track and green when it can pass. The interlocking
system also makes use of five mechanical safety relays that externalise the
state of a route and allow redundancy between software logic and electronic
circuits.

Related Publications can be found at [LFWL16, FPG+18, HFB+ms].

7.5 The Aerospace Case Study

INTO-CPS and its co-simulation features have been also exploited in Aerospace
use cases. As a member of INTO-CPS association, UTRC Ireland have used
INTO-CPS for its Irish Development Agency (IDA) internal project14 and
its ongoing Clean Sky2 MISSION project [BMF+17].

The case study involved the co-simulation of a CPS motor actuation. Con-
trol modules have been designed and developed using MATLAB/Simulink.
Through the INTO-CPS 3D co-simulation feature, we have successfully demon-
strated the virtual co-simulation of the control through the Unity Environ-
ment (Fig. 9).

The INTO-CPS technology already contains a suite of modelling and simu-
lation tools that are being used in aerospace model-based system engineer-
ing applications. In addition to that, tools are FMI enabled and includ-
ing 20-sim, Overture/VDM and the tool suite has been demonstrated to
also work with Dymola, Matlab/Simulink/Modelon, OpenModelica, 4DIAC
and SimulationX. This technology is already centered around FMI-based
co-simulation and it has initial DSE capabilities that would automate and
accelerate aerospace sensitivity analysis in model based development and
analysis phases. In the same manner, initial support for test automation
using RT Tester with static exploration of the space to be covered is also
available, promoting an interesting choice for achieving MC/DC coverage
need by aerospace regulations. In future projects the INTO-CPS association

14"Network of Excellence in Aerospace Cyber Physical Systems", funded by IDA Agency,
2015

54

The INTO-CPS Guide (Public)

Figure 9: INTO-CPS 3D Co-Simulation Results for high lift actuation

members aim to mature INTO-CPS technology particularly for the aerospace
industry and evolve it to TRL 6 and above.

7.6 The Manufacturing Case Study

The case study involved the virtual design and validation of a CPS-based
manufacturing system for assembling USB sticks, inspired from Continental’s
real manufacturing and testing processes in a production line. It is a repre-
sentative example of distributed heterogeneous systems in which products,
manufacturing resources, orders and infrastructure are all cyber-physical. In
this setting, several features (such as asynchronous communication, messages
flow, autonomy, self-adaptation, etc.) could be investigated at design time,
for example using a collaborative modelling approach. Consequently, the
case study offered a balance between being sufficiently simple to be easily
followed as a production line example, including generating a tangible out-
put, and at the same time being sufficiently general to allow the study of
the co-simulation complexity. Furthermore, by choosing a USB stick, the
example opened the (unexplored) possibility of extending the purpose of the
study to interactions between generated hardware and generated software
solutions in the production line.

Obviously, this small experiment, in terms of scale and time, could not give
a full and clear assessment of benefits for developing an integrated product-

55

The INTO-CPS Guide (Public)

production co-simulation for CPS-based industrial control. Nevertheless,
there were some recognisable benefits compared to the current state of tech-
nology:

• the possibility to simulate, test and validate from a holistic perspective
and with an increased level of accuracy an entire production system
that needs cross-functional expertise. The initial development of a
homogeneous co-simulation in VDM for the iPP4CPPS prototype was
particularly useful in driving cooperation and making clear the assump-
tions of the distributed teams involved in modelling the specific compo-
nents. This phase proved to be the most difficult and time-consuming
in building the co-simulation, requiring a very intensive communica-
tion for a shared understating of the requirements. Once the VDM co-
simulation was running, the independent developments of units could
be integrated, validated and deployed in any order.

• to a certain extent, the ability to handle unpredictable integration re-
quirements. The employment of co-simulations when designing an au-
tomated production system avoided the build-up inertia of subsequent
design constraints, facilitating the low and late commitment for these
decisions, i.e. the specific micro-controllers or PLCs, the layout of the
plant, the number of memory boxes from the warehouse etc. For exam-
ple, the possibility to generate code - from all the simulation tools used
in this experiment (i.e. 4DIAC, 20-Sim, Overture) – for an extended
set of computational devices was a clear advantage in respect to late
commitment for the computational system used in the production sys-
tem.

The methodology adopted to develop the co-simulation closely followed the
classical stages of agent-oriented/component-based software engineering method-
ologies. Following the mechanical model derived from the requirements, the
high-level abstraction for the behaviour of each simulation was implemented
and the interactions among the components could be analysed. It included
distinct simulations for each component type (Table 1): production (i.e. ware-
house station, robot, transporting wagons, and testing station), orders (i.e.
placed via mobile devices), and factory infrastructure (i.e. part tracker).

The co-simulation model had been initially implemented in VDM and vali-
dated on the INTO-CPS tools chain. The main goal of this implementation
was manifold: a) to validate the interaction protocols among the composite
simulations; b) to have an early working co-simulation where the specific sim-
ulations may be gradually added, tested and validated; c) to allow for a more
independent development among the dispersed teams involved in modelling

56

The INTO-CPS Guide (Public)

the specific simulations, while at the same time keeping the co-simulation
functional at all times; and d) to cover the left-over parts of the co-simulation
whose modelling was not needed in detail for the validation of the interaction
protocol (e.g. test station) or for which there is was FMI-compliant tool (i.e.
factory infrastructure).

Component
type

Unit Technology Deployment

Orders HMI 4DIAC + MQTT
or Overture
(VDM)

smartphones and
tablets

Infrastructure Part
Tracker

Overture (VDM) NVIDIA Tegra Jetson

Production Warehouse
+
Robotic
Arm

20-sim Raspberry Pi with
UniPi Expansion
Board + a Stäubli
robot

Production Wagons 4DIAC Raspberry Pi con-
trolling DC motors,
position sensors and
anti-collision ultra-
sonic sensors

Production Test Sta-
tion

4DIAC Cognex Vision In-
sight 1100 camera
connected to Rasp-
berry Pi for control of
actuators

General Unity 20-sim animation PC

Table 4: Technologies used for different system components

The detailed model of each simulation covered a continuous-time model re-
alised in 20-Sim for the warehouse and robotic arm, a discrete-time model
in 4DIAC for the transportation system and test station, and a DE model
in Overture for the infrastructure. All units modelled and tested by the het-
erogeneous co-simulation were then deployed in a demo stand for fine tuning
under real-life conditions (Table 4). This phase presumed the extension of
code generation capabilities of the simulation tools, such as: 20-sim 4C has
been extended with MQTT, Modbus, I2C colour sensor, I2C multiplexer
and UniPi board for the Raspberry Pi; Overture for employing MQTT as
communication protocol on a Raspberry Pi 3; and 4DIAC for accelerometers

57

The INTO-CPS Guide (Public)

control.

Figure 10: Demo stand for deployment of the co-simulated units, containing:
1) the warehouse stacks; 2) the assembly box at the base of the warehouse
stacks; 3) the memory boxes of the warehouse unit; 4) the robotic arm for
moving parts around the warehouse; 5) wagons on different locations of the
track; 6) the loading station; 7) the test station; 8) the circular track for the
wagons..

The experiment assessed the benefits and the maturity level of model-driven
engineering technologies for future adoption into CPS-based production sys-
tems. It covered the entire engineering life-cycle (i.e. from requirements to
deployment into a real infrastructure) and contributed to several advance-
ments of engineering methods and tools. The experiment delivered an effec-
tive proof-of-concept for model-driven engineering of CPS-based production
system as a feasible and promising approach to (re)engineer the factory of
the future with the employed technologies (i.e. INTO-CPS, Overture, 20-Sim
and 4DIAC). Nevertheless, the experiment also identified a number of issues
that may have further impact over the adoption of model-driven engineering
technologies into real settings: the FMI-compatibility of the simulation tools
used in industry; the hardware/software-in-the-loop simulations still display
complex synchronisation problems for dissimilar time-scales; the extended set
of low-level devices (i.e. sensors, industrial communication standards etc.)

58

The INTO-CPS Guide (Public)

that are used in today and future industry require special standardisation
effort to enhance the deployment capabilities of the simulation tools. More
information can be found online 1516.

7.7 The Combustion Engine Case Study

As reported in [PLS+17], at MAN Diesel & Turbo (MDT) the conventional
approach for developing two-stroke combustion engines with a distributed
embedded control system is being challenged. In particular, for diesel engines
pollution is a key element that it is desirable to reduce from a competitive
perspective. New emission legislation focuses on the reduction of especially
NOx emission. Widely known emission reduction technologies for reducing
NOx are selective catalytic reduction and Exhaust Gas Recirculation (EGR),
both being developed at MDT.

These systems require advanced algorithms to control the complexity of the
physical dynamics of large engines. MDT is divided into different depart-
ments with different responsibilities in the same way as many other large
organisations. In the control department at MDT, control algorithms are
created directly in the target software framework with the possibility of per-
forming Software In the Loop (SIL) simulation during development. Models
of the physical behaviour are created in other departments of MDT using the
tools most suitable for the specific constituent system.

For the control system development, the physical dynamics models are im-
plemented in an internally developed tool for Continuous-Time (CT) simu-
lation called the Dynamic Simulation Environment (DSE) which is part of
the software framework. The primary focus in DSE is SIL/Hardware In the
Loop (HIL), and the physics models implemented here are often an abstrac-
tion of high-fidelity models. Historically it has been challenging inside MDT
to enable heterogeneous collaborations between the different teams produc-
ing models in different departments. As a result different models are typically
fragmented and solely used within one department for the dedicated purpose
each of the models serve. Thus, efforts that goes across these individual
insights are only found at the test on the real platform.

At MDT the models used in the control department are based on a software
framework and DSE is implemented in C++ and run on a 32-bit Linux
platform while the physical modelling tools often require Windows. It was

15http://centers.ulbsibiu.ro/incon/index.php/ipp4cpps/
16http://www.cpse-labs.eu/experiment.php?id=c3_uk_gs_ipp4cpps

59

http://centers.ulbsibiu.ro/incon/index.php/ipp4cpps/
http://www.cpse-labs.eu/experiment.php?id=c3_uk_gs_ipp4cpps

The INTO-CPS Guide (Public)

illustrated how a transition from the current simulation process at MDT to
one using co-simulation utilising FMI.

The aim with the approach suggested was to reduce redundancy in the devel-
opment process and reuse and combine models from different departments
[PLS+17]. One of the main challenges for such a transition is to enable
co-simulation across different hardware architectures and Operating Sys-
tem (OS) platforms due to constraints from software frameworks, physical
simulation tools and version compatibility, and INTO-CPS Technology was
key in overcoming it.

7.8 The Mars Rover Case Study

At the European Space Agency (ESA) many systems fall into the CPS cat-
egory. As reported in [FAVL17], the Mars Rover case study, which was
developed in Crescendo, a previous project, had been restricted to the com-
bination of two models: one DE model expressed using the VDM [FLV08] and
Overture [LBF+10] and one CT model expressed using bond graphs [KR68]
and the 20-sim tool [Kle06].

Moreover, the CT model would have to be kept confidential. Thus, it
was problematic to share this co-model with other parties. As reported
in [FAVL17], this could only be circumvented by running the co-simulation
over the Internet, with the proprietary constituent CT model running at
ESA. While technically feasible, this of course causes many other problems,
such as allowing remote access through corporate firewalls, poor simulation
performance, etc.

For this issue, FMI and the INTO-CPS technology offer a potential solution
since the FMUs produced for each constituent model do not necessarily need
to contain the model itself. Thus, it is possible to protect the Intellectual
Property (IP) in this manner.

In [FAVL17], the authors report on their successful attempt of migrating the
Mars Rover co-model from Crescendo to the INTO-CPS technology, and how
the INTO-CPS multi-model enables a solution satisfying the requirements of
an agency as ESA which, manages a multitude of suppliers are involved in
multiple missions. The ability of managing IP and ease of model construction,
system of systems mission analysis, and validating on-board software were
reported as successes emerging from the usage of INTO-CPS.

60

The INTO-CPS Guide (Public)

8 Related Work

Extensive work has been carried out to identify the main concepts and es-
sential challenges in co-simulation. In this section, we review some of these
works.

[TWH07] reviews principles and implementation strategies of co-simulation
applied to an HVAC system. It provides multiple experiments showing how
the stability and accuracy of the co-simulation is affected by the choice of
those strategies.

The work in [HP17] exposes the disparity in terminology related to co-
simulation (e.g., the term “co-simulation” is understood as “cooperative sim-
ulation”, or “coupled system simulation”), provides an in-depth discussion
of the multiple concepts, and proposes a way to classify and structure co-
simulation methods. The authors propose the distinction by:

state of development: the motivation being the use of co-simulation (e.g.,
optimise the simulation of a single model by partitioning, or couple the
behaviour of wildly different subsystems);

application field: see, e.g., the application fields described in [GTB+17b];
model description: the kind of models being combined (e.g., Ordinary Dif-

ferential Equations (ODEs), Differential-Algebraic Equations (DAEs),
discrete event systems);

numerical approach: the kind of coupling algorithms employed; and
interfaces: the nature of the physical interfaces between the systems being

coupled.

Recognising that co-simulation is not a new concept and that it has been ap-
plied in wildly different fields, [GTB+18] reviewed co-simulation approaches,
research challenges, and research opportunities. They apply feature oriented
domain analysis [KCH+90] to help map the field. The main result is a
feature model that classifies the requirements of co-simulation frameworks
and the participating simulators. They conclude that the main research
needs are: finding generic approaches for modular, stable, valid, and accu-
rate coupling of simulation units; and finding standard interfaces for hybrid
co-simulation.

With a focus on power systems, but still covering the fundamental concepts,
[PVDML+17] highlights the value of co-simulation for the analysis of large
scale power systems. In a tutorial fashion, it goes over the main concepts
and challenges, providing a great introduction for new researchers in the

61

The INTO-CPS Guide (Public)

field.

Recognising the research in co-simulation should be driven by both industry
and academia, [SES+18] reports on an empirical survey, given to both prac-
titioners and academics. The preliminary results corroborate the challenges
pointed out in the surveys we referenced here. Additionally, it becomes clear
that co-simulation is being used without in-depth knowledge of the subject,
which may lead to the improper use of the technique, as well as highlighting
the need to develop more usable tools.

Finally, [GTD+18] discusses the past and future of co-simulation, provid-
ing an historical overview of the topic, as well as possible research direc-
tions.

62

The INTO-CPS Guide (Public)

9 Future Directions

It is envisaged that the INTO-CPS technology will be further extended as
the FMI standard evolves, in particular in future research projects. Thus, the
future directions here will depend both on the members of the INTO-CPS
Association as well as which externally funded research projects that will be
successful in achieving funding.

In the subsections below candidate future directions are proposed.

9.1 Adapting FMUs Easily to Ones Needs

In the context of continuous system co-simulation, it is well known that there
is no one-size-fits-all co-simulation approach. Different kinds of systems are
best co-simulation different ways [GTB+18]. At the same time, different
domains have specialised numerical solvers, which means we cannot ignore
the solvers in the FMUs. A future research direction is to understand how
to reconcile such contradicting requirements. A possible way is to allow the
user to preserve the exported FMUs, but change the way these interact with
the environment, by wrapping an FMU around them [GMD+0]. This way
does not solve all challenges in this regard, and the approach lacks validation
from multiple domains. It is envisaged that this kind of Domain Specific
Languages (DSLs) will be developed to make it easier to make semantic
adaptations of FMUs.

9.2 Enlarging the tools and standards supported by the
INTO-CPS Tool Suite

The INTO-CPS tool suite is on purpose open to any tool that live up to the
requirements in the FMI version 2.0 standard for co-simulation. As indicated
in Section 6 a possible entry point to the co-simulation setup is a special
SysML profile supporting CPS models. Right now this is discussed in OMG
as a potential new standard in a SysML setting and this is only supported
by the Modelio tool (supporting export of both model descriptions as well as
configurations of co-simulation). It would be great to see this special profile
by other SysML tools as well. In addition, one can imagine that alternative
tool supporting AADL [AAD04] or Capella [Roq17].

63

The INTO-CPS Guide (Public)

There are also a lot of other standards for co-simulations [GTB+18] and it is
possible to imagine that bridges from the INTO-CPS tool chain will be made
to a number of these. Here the most obvious candidate is High Level Archi-
tecture (HLA) [IEE10]. Initial work has been carried out in other research
groups for such a combination [NGL+14, ACP17] but we imagine that more
work is needed here to get this combination working smoothly.

9.3 Use in a Cloud-based Eco-system/Marketplace

The INTO-CPS Application is made using Electron so it is using web technol-
ogy but still requires local installation on the local computers. It is possible
to imagine that it will be possible to move this to become a cloud application
where it will no longer be necessary to install it locally. The DSE feature
is already available in a cloud context as explained above. In a very long
context it can also be imagined that the different modelling and simulation
tools at some stage will become available on-line and possibly in a cloud
context.

In addition to the tools becoming available in a cloud context one can imagine
that it some point in the future will be possible to share constituent models in
a cloud context. Such models could then either be available in a source form
or a generated form in the form of an FMU. Optimally these could include
both free as well as commercial models in a marketplace setting. We believe
that this could enable a shortage of time required to develop multi-models
for CPSs.

9.4 Use in a Digital Twin setting

In order to increase the value of multi-models one can imagine making use of
them in a deployed setting, i.e., after the CPS has been deployed if data from
it can be fed back to a cloud where a co-simulation can be used to predict how
alternative interventions can be made and what the consequences of these
will be [GPF+18]. This is known as a digital twin but there are naturally a
number of research challenges in connection with something like this since
you need to determine how to set up such a co-simulation as well as what
the consequences will be of the frequency of the data arriving in pseudo-
real-time. For some types of application this could work, whereas for others
the predictions would be far from representing reality. Research is needed to
determine when this would work.

64

The INTO-CPS Guide (Public)

9.5 Increased Support for Dynamic Evolution Scenar-
ios

In a System of Systems setting it is regular that the composition of con-
stituent systems involved in a scenario change dynamically. In an FMI setting
this is currently not possible since it is necessary to have a static composition
of the FMUs used in a co-simulation. In order to be able to support dynamic
evolution in a co-simulation scenario it is desirable to conduct research ex-
ploring to what extend this could be a possibility.

9.6 Incorporation of Computational Fluid Dynamics Co-
simulations

To accurately model flow of material (typically liquid or gasses) Computa-
tional Fluid Dynamics (CFD) models are typically used. These are typically
represented at a very detailed level, and as a consequence CFD simulations
can be really slow. In addition, in case CFD simulations fail the error control
is not properly aligned with the orchestration enabled in a FMI based setting.
In order to properly support CFD elements in an INTO-CPS setting research
is needed to determine how this can be carried out efficiently in a semantically
sound manner. Here it is imagined that a part of this will be approximating
the CFDs with Reduced Order Models (ROMs) [CFCA13].

9.7 Increased support for Human Interaction

Human-in-the-Loop where people can give input to co-simulations while they
are running is certainly relevant. This have actually been carried out both
using the PVSio technology on the line following robot example [PBM17].
In addition, human intervention has been used in a part of co-simulations
in the IPP4CPPS project (see Section 7.6). However, we imagine that sub-
stantial more automation and assistance can be made for this kind of human
interaction. One can also imagine that debugging features such as paus-
ing, inspecting values and possibly injecting faults could be included in the
Co-simulation Orchestration Engine.

65

The INTO-CPS Guide (Public)

9.8 Increased support for Network Considerations

FMI is not by itself good at modelling the communication layers between
different constituent systems. In the INTO-CPS project it was attempted to
model this as an FMU ether where messages can be lost. However, it would
be ideal to be able to appropriate model each FMU being at a particular
address (e.g., a URL or an IP address) and then have a library of alternative
connections between such addresses, where one could experiment with non-
ideal behaviour (e.g., delays and loosing messages). Such non-ideal behaviour
may actually influence the way the real system behaves and thus it makes a
lot of sense that it also would be possible to incorporate such aspects at a
modelling level so it could be analysed either in plain co-simulations or with
DSEs.

9.9 Intelligence, Adaptivity and Autonomy

CPSs also ideally are smart in the sense that they process intelligent be-
haviour. In order to introduce autonomy it can be ideal to introduce Machine
Learning (ML) in different fashions in order to learn how to best behave. ML
can be used in different ways here:

• Based on time series data for an individual physical component one can
imagine that ML can be used to automatically derive an approximation
FMU corresponding to that physical component.

• In a digital twin setting one can imagine that ML can be used to learn
to what extend the real system behave as predicted by the co-models.
Based on this different actions could be taken automatically or manu-
ally if human intervention is desirable.

• FMUs themselves could contain ML elements for example in order to
have adaptive control that will be valuable and express intelligent be-
haviour.

9.10 Tradeoff in Abstraction between Speed and Accu-
racy

Many models can be expressed at different levels of abstraction. There is a
natural tradeoff between speed and accuracy of a co-simulation. An inter-
esting direction could for example be to support DSE’s, while using multiple

66

The INTO-CPS Guide (Public)

abstraction models. For example, higher abstraction models might be used
to optimise the design globally, while lower abstraction models validate the
candidate found, and further optimise each of them to find the best one.
In particular for FMUs that are very slow in simulating (e.g., CFD models)
it may make a lot of sense to use more abstract models (at least initially)
in order to be able to obtain results within a reasonable amount of time.
For CFD models it is for example possible to produce ROMs and these can
be automatically derived from more detailed models. Thus, it can be valu-
able to make it easy for users to select what level of abstraction to use in a
co-simulation for each of the constituent models.

67

The INTO-CPS Guide (Public)

References

[AAD04] Architecture analysis & design language (aadl). Aerospace
Standard AS5506, SAE Aerospace, November 2004.

[ACM+16] Nuno Amálio, Ana Cavalcanti, Alvaro Miyazawa, Richard
Payne, and Jim Woodcock. Foundations of the SysML profile
for CPS modelling. Deliverable D2.2a, version 1.0, INTO-CPS
project, December 2016.

[aco] ACOSAR: Research Project.

[ACP17] Muhammad Usman Awais, Milos Cvetkovic, and Peter Palen-
sky. Hybrid simulation using implicit solver coupling with
HLA and FMI. International Journal of Modeling, Simula-
tion, and Scientific Computing, 2017.

[APC+15] Nuno Amálio, Richard Payne, Ana Cavalcanti, Etienne
Brosse, and Jim Woodcock. Foundations of the SysML profile
for CPS modelling. Deliverable D2.1a, version 1.0, INTO-CPS
project, December 2015.

[BB15] A. Beg and A. Butterfield. Development of a prototype trans-
lator from Circus to CSPm. In Proc. 9th Intl. Conf. on
Open Source Systems and Technologies (ICOSST), pages 16–
23. IEEE, December 2015.

[BBG+13a] David Broman, Christopher Brooks, Lev Greenberg, Ed-
ward A. Lee, Michael Masin, Stavros Tripakis, and Michael
Wetter. Determinate composition of FMUs for co-simulation.
In Eleventh ACM International Conference on Embedded Soft-
ware, page Article No. 2, Montreal, Quebec, Canada, 2013.
IEEE Press Piscataway, NJ, USA.

[BBG+13b] David Broman, Christopher X. Brooks, Lev Greenberg, Ed-
ward A. Lee, Michael Masin, Stavros Tripakis, and Michael
Wetter. Determinate composition of fmus for co-simulation.
In Proceedings of the International Conference on Embedded
Software, EMSOFT 2013, Montreal, QC, Canada, September
29 - Oct. 4, 2013, pages 2:1–2:12. IEEE, 2013.

[BBQS15] A. Bagnato, E. Brosse, I. R. Quadri, and A. Sadovykh. INTO-
CPS: An integrated “tool chain” for comprehensive model-

68

The INTO-CPS Guide (Public)

based design of cyber-physical systems. In Revue Génie Logi-
ciel, pages 31–35, June 2015.

[BC+17] Jö Brauer, Luis Diogo Couto, , Marcel Groothuis, Miran
Hasanagic, and Kangfeng Ye. Demonstration of Integrated
Co-Simulation and Testing. Technical report, INTO-CPS De-
liverable, D5.3b, December 2017.

[Beg16] M. M. A. Beg. Translating from “State-Rich” to “State-Poor”
Process Algebras. PhD thesis, Department of Computer Sci-
ence, Trinity College Dublin, April 2016.

[BFG+12] Jan F. Broenink, John Fitzgerald, Carl Gamble, Claire In-
gram, Angelika Mader, Jelena Marincic, Yunyun Ni, Ken
Pierce, and Xiaochen Zhang. Methodological guidelines
3. Technical report, The DESTECS Project (INFSO-ICT-
248134), October 2012.

[BH17] Jörg Brauer and Miran Hasanagic. Implementation of a
model-checking component. Technical report, INTO-CPS De-
liverable, D5.3c, December 2017.

[BHJ+06] Armin Biere, Keijo Heljanko, Tommi A. Juntilla, Timo Lat-
vala, and Viktor Schuppan. Linear encodings of bounded LTL
model checking. Logical Methods in Computer Science, 2(5),
2006.

[BLL+17] Victor Bandur, Peter Gorm Larsen, Kenneth Lausdahl,
Casper Thule, Anders Franz Terkelsen, Carl Gamble, Adrian
Pop, Etienne Brosse, Jörg Brauer, Florian Lapschies, Marcel
Groothuis, Christian Kleijn, and Luis Diogo Couto. INTO-
CPS Tool Chain User Manual. Technical report, INTO-CPS
Deliverable, D4.3a, December 2017.

[Blo14] Torsten Blochwitz. Functional Mock-up Interface for
Model Exchange and Co-Simulation. https://www.
fmi-standard.org/downloads, July 2014.

[BLV+10] J. F. Broenink, P. G. Larsen, M. Verhoef, C. Kleijn, D. Jo-
vanovic, K. Pierce, and F. Wouters. Design Support and
Tooling for Dependable Embedded Control Software. In Pro-
ceedings of Serene 2010 International Workshop on Software
Engineering for Resilient Systems, pages 77–82. ACM, April
2010.

69

https://www.fmi-standard.org/downloads
https://www.fmi-standard.org/downloads

The INTO-CPS Guide (Public)

[BMF+17] Gilberto Burgio, Leonardo Mangeruca, Alberto Ferrari, Marco
Carloni, Virgilio Valdivia-Guerrero, Laura Albiol-Tendillo,
Parithi Govindaraju, Marcel Gottschall, Olaf Oelsner, Sören
Reglitz, Jann-Eve Stavesand, Andreas Himmler, and Lionel
Yapi. Framework for Modelling and Simulation of Multi-
Physics Aircraft Systems with Distributed Electronic Con-
trollers. In SAE Technical Paper. SAE International, 2017.

[BOA+11] Torsten Blochwitz, Martin Otter, Martin Arnold, Constanze
Bausch, Christoph Clauß, Hilding Elmqvist, Andreas Jung-
hanns, Jakob Mauss, Manuel Monteiro, Thomas Neidhold,
Dietmar Neumerkel, Hans Olsson, Jörg-Volker Peetz, and Su-
sann Wolf. The functional mockup interface for tool indepen-
dent exchange of simulation models. In Proceedings of the 8th
International Modelica Conference, pages 105–114, 03 2011.

[BQ15] Etienne Brosse and Imran Quadri. COE Contracts from
SysML. Technical report, INTO-CPS Deliverable, D4.1c, De-
cember 2015.

[BQ16] Etienne Brosse and Imran Quadri. SysML and FMI in INTO-
CPS. Technical report, INTO-CPS Deliverable, D4.2c, De-
cember 2016.

[Bro97] Jan F. Broenink. Modelling, Simulation and Analysis with
20-Sim. Journal A Special Issue CACSD, 38(3):22–25, 1997.

[Bro17] Etienne Brosse. SysML and FMI in INTO-CPS. Technical
report, INTO-CPS Deliverable, D4.3c, December 2017.

[CBM+13] M. V. Cengarle, S. Bensalem, J. McDermid, R. Passerone,
A. Sangiovanni-Vincentelli, and M. Törngren. Characteristics,
capabilities, potential applications of Cyber-Physical Systems:
a preliminary analysis. Project Deliverable D2.1, EU Frame-
work 7 Project: Cyber-Physical European Roadmap & Strat-
egy (CyPhERS), November 2013.

[CBM+17] Luis Diogo Couto, Stylianos Basagianis, Alie El-Din Mady,
El Hassan Ridouane, Peter Gorm Larsen, and Miran
Hasanagic. Injecting Formal Verification in FMI-based Co-
Simulation of Cyber-Physical Systems. In The 1st Workshop
on Formal Co-Simulation of Cyber-Physical Systems (CoSim-
CPS), Trento, Italy, September 2017.

70

The INTO-CPS Guide (Public)

[CFCA13] Kevin Carlberg, Charbel Farhat, Julien Cortial, and David
Amsallem. The gnat method for nonlinear model reduction:
Effective implementation and application to computational
fluid dynamics and turbulent flows. Journal of Computational
Physics, 242:623 – 647, 2013.

[CMW13] Ana Cavalcanti, Alexandre Mota, and Jim Woodcock.
Simulink timed models for program verification. In Zhim-
ing Liu, Jim Woodcock, and Huibiao Zhu, editors, Theories
of Programming and Formal Methods - Essays Dedicated to
Jifeng He on the Occasion of His 70th Birthday, volume 8051
of Lecture Notes in Computer Science, pages 82–99. Springer,
2013.

[Con13] Controllab Products B.V. http://www.20sim.com/, January
2013. 20-sim official website.

[cos] COSIBAS: Research project.

[CSW03] Ana Cavalcanti, Augusto Sampaio, and Jim Woodcock. A
refinement strategy for circus. Formal Asp. Comput., 15(2-
3):146–181, 2003.

[CSW05] Ana Cavalcanti, Augusto Sampaio, and Jim Woodcock. Uni-
fying classes and processes. Software and System Modeling,
4(3):277–296, 2005.

[CW06] A. Cavalcanti and J. Woodcock. A tutorial introduction to
CSP in unifying theories of programming. In Refinement Tech-
niques in Software Engineering, volume 3167 of LNCS, pages
220–268. Springer, 2006.

[CW15] Samuel Canham and Jim Woodcock. Three approaches to
timed external choice in UTP. In Unifying Theories of Pro-
gramming, volume 8963, pages 1–20. Springer, 2015.

[CWA16] Ana Cavalcanti, Jim Woodcock, and Nuno Amálio. Be-
havioural models for FMI co-simulations. In Augusto Sampaio
and Farn Wang, editors, Theoretical Aspects of Computing -
ICTAC 2016 - 13th International Colloquium, Taipei, Taiwan,
ROC, October 24-31, 2016, Proceedings, volume 9965 of Lec-
ture Notes in Computer Science, pages 255–273, 2016.

[cyd] CyDER: Research Project.

71

The INTO-CPS Guide (Public)

[DAB+15] Lipika Deka, Zoe Andrews, Jeremy Bryans, Michael Henshaw,
and John Fitzgerald. D1.1 definitional framework. Technical
report, The TAMS4CPS Project, April 2015.

[DC03] Jim Davies and Charles Crichton. Concurrency and refinement
in the unified modeling language. Formal Asp. Comput., 15(2-
3):118–145, 2003.

[des] DESTECS: Research Project.

[emp] EMPHYSIS: Research Project.

[eri] ERIGrid: Research Project.

[Fav05] Jean-Marie Favre. Foundations of Model (Driven) (Reverse)
Engineering : Models – Episode I: Stories of The Fidus Pa-
pyrus and of The Solarus. In Language Engineering for Model-
Driven Software Development, March 2005.

[FAVL17] Sergio Feo-Arenis, Marcel Verhoef, and Peter Gorm Larsen.
The Mars-Rover Case Study Modelled Using INTO-CPS. In
Fitzgerald, Tran-Jørgensen, Oda, editor, The 15th Overture
Workshop: New Capabilities and Applications for Model-based
Systems Engineering, pages 130–144, Newcastle, UK, Septem-
ber 2017. Newcastle University, Computing Science. Technical
Report Series. CS-TR- 1513.

[FBG+18] Frederik Foldager, Ole Balling, Carl Gamble, Peter Gorm
Larsen, Martin Boel, and Ole Green. Design Space Explo-
ration in the Development of Agricultural Robots. In AgEng
conference, Wageningen, The Netherlands, July 2018.

[FE98] Peter Fritzson and Vadim Engelson. Modelica - A Unified
Object-Oriented Language for System Modelling and Simu-
lation. In ECCOP ’98: Proceedings of the 12th European
Conference on Object-Oriented Programming, pages 67–90.
Springer-Verlag, 1998.

[FGL+15] John Fitzgerald, Carl Gamble, Peter Gorm Larsen, Kenneth
Pierce, and Jim Woodcock. Cyber-Physical Systems design:
Formal Foundations, Methods and Integrated Tool Chains. In
FormaliSE: FME Workshop on Formal Methods in Software
Engineering, Florence, Italy, May 2015. ICSE 2015.

[FGP+16] John Fitzgerald, Carl Gamble, Richard Payne, Peter Gorm
Larsen, Stylianos Basagiannis, and Alie El-Din Mady. Collab-

72

The INTO-CPS Guide (Public)

orative Model-based Systems Engineering for Cyber-Physical
Systems – a Case Study in Building Automation. In Proc. IN-
COSE Intl. Symp. on Systems Engineering, Edinburgh, Scot-
land, July 2016.

[FL98] John Fitzgerald and Peter Gorm Larsen. Modelling Systems
– Practical Tools and Techniques in Software Development.
Cambridge University Press, The Edinburgh Building, Cam-
bridge CB2 2RU, UK, 1998. ISBN 0-521-62348-0.

[FLG17] Frederik Foldager, Peter Gorm Larsen, and Ole Green. De-
velopment of a Driverless Lawn Mower using Co-Simulation.
In 1st Workshop on Formal Co-Simulation of Cyber-Physical
Systems, Trento, Italy, September 2017.

[FLV08] J. S. Fitzgerald, P. G. Larsen, and M. Verhoef. Vienna De-
velopment Method. Wiley Encyclopedia of Computer Science
and Engineering, 2008. edited by Benjamin Wah, John Wiley
& Sons, Inc.

[FLV14] John Fitzgerald, Peter Gorm Larsen, and Marcel Verhoef,
editors. Collaborative Design for Embedded Systems – Co-
modelling and Co-simulation. Springer, 2014.

[FMI14] Functional mock-up interface for model exchange and co-
simulation. Technical Report 2.0, FMI development group,
2014.

[FPG+18] John Fitzgerald, Richard Payne, Carl Gamble, Ken Pierce,
Martin Mansfield, Simon Foster, Kangfeng Ye, Casper Thule,
Rene Nilsson, Kenneth Lausdahl, Florian Lapschies, and Fred-
erik Foldager. The into-cps examples compendium. Technical
report, INTO-CPS Association, October 2018.

[Fri04] Peter Fritzson. Principles of Object-Oriented Modeling and
Simulation with Modelica 2.1. Wiley-IEEE Press, January
2004.

[FZW14] S. Foster, F. Zeyda, and J. Woodcock. Isabelle/UTP: A mech-
anised theory engineering framework. In David Naumann, ed-
itor, Proc. 5th Intl. Symposium on Unifying Theories of Pro-
gramming (UTP 2014), volume 8963 of LNCS, pages 21–41.
Springer, 2014.

73

The INTO-CPS Guide (Public)

[FZW16a] S. Foster, F. Zeyda, and J. Woodcock. Unifying heterogeneous
state-spaces with lenses. In Proc. 13th Intl. Conf. on Theoret-
ical Aspects of Computing (ICTAC), volume 9965 of LNCS.
Springer, 2016.

[FZW16b] Simon Foster, Frank Zeyda, and Jim Woodcock. Unifying het-
erogeneous state-spaces with lenses. In Augusto Sampaio and
Farn Wang, editors, Theoretical Aspects of Computing - IC-
TAC 2016 - 13th International Colloquium, Taipei, Taiwan,
ROC, October 24-31, 2016, Proceedings, volume 9965 of Lec-
ture Notes in Computer Science, pages 295–314, 2016.

[GFR+12] Anand Ganeson, Peter Fritzson, Olena Rogovchenko, Adeel
Asghar, Martin Sjölund, and Andreas Pfeiffer. An OpenMod-
elica Python interface and its use in pysimulator. In Martin
Otter and Dirk Zimmer, editors, Proceedings of the 9th In-
ternational Modelica Conference. Linköping University Elec-
tronic Press, September 2012.

[GMD+0] Claudio Gomes, Bart Meyers, Joachim Denil, Casper Thule,
Kenneth Lausdahl, Hans Vangheluwe, and Paul De Meule-
naere. Semantic adaptation for fmi co-simulation with hier-
archical simulators. SIMULATION, 0(0):0037549718759775,
0.

[GPF+18] Carl Gamble, Richard Payne, John Fitzgerald, Sadegh Soud-
jani, Frederik F. Foldager, and Peter Gorm Larsen. Auto-
mated Exploration of Parameter Spaces as a Method for Tun-
ing a Predictive Digital Twin. Submitted for publication, 2018.

[GRABR14] Thomas Gibson-Robinson, Philip Armstrong, Alexandre
Boulgakov, and A.W. Roscoe. FDR3 — AModern Refinement
Checker for CSP. In Erika Ábrahám and Klaus Havelund, ed-
itors, Tools and Algorithms for the Construction and Analysis
of Systems, volume 8413 of Lecture Notes in Computer Sci-
ence, pages 187–201, 2014.

[GTB+17a] Cláudio Gomes, Casper Thule, David Broman, Peter Gorm
Larsen, and Hans Vangheluwe. Co-simulation: State of the
art. CoRR, abs/1702.00686, 2017.

[GTB+17b] Cláudio Gomes, Casper Thule, David Broman, Peter Gorm
Larsen, and Hans Vangheluwe. Co-simulation: State of the
art. Technical report, feb 2017.

74

The INTO-CPS Guide (Public)

[GTB+18] Cláudio Gomes, Casper Thule, David Broman, Peter Gorm
Larsen, and Hans Vangheluwe. Co-simulation: a Survey. ACM
Comput. Surv., 51(3):49:1–49:33, May 2018.

[GTD+18] Cláudio Gomes, Casper Thule, Julien DeAntoni, Peter Gorm
Larsen, and Hans Vangheluwe. Co-simulation: The Past, Fu-
ture, and Open Challenges. In Symposium On Leveraging
Applications of Formal Methods, Verification and Validation,
page to be published, Limassol, Cyprus, 2018. Springer Verlag.

[GV08] Orna Grumberg and Helmut Veith, editors. 25 Years of Model
Checking - History, Achievements, Perspectives, volume 5000
of Lecture Notes in Computer Science. Springer, 2008.

[HDM10] I. J. Hayes, S. E. Dunne, and L. Meinicke. Unifying theories of
programming that distinguish nontermination and abort. In
Mathematics of Program Construction (MPC), volume 6120
of LNCS, pages 178–194. Springer, 2010.

[HFB+ms] Miran Hasanagić, Tommaso Fabbri, Victor Bandur, Peter
W. V. Tran-Jørgensen, Peter Gorm Larsen, and Julien Ouy.
Code Generation for Distributed Embedded Systems. January
2018. Submitted for journal: Design Automation for Embed-
ded Systems.

[HH98] Tony Hoare and Jifeng He. Unifying Theories of Programming.
Prentice-Hall, 1998.

[HIL+14] J. Holt, C. Ingram, A. Larkham, R. Lloyd Stevens, S. Riddle,
and A. Romanovsky. Convergence report 3. Technical report,
COMPASS Deliverable, D11.3, September 2014.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Interna-
tional Series in Computer Science. Prentice Hall, 1985.

[HP17] Irene Hafner and Niki Popper. On the terminology and struc-
turing of co-simulation methods. In Proceedings of the 8th
International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools, pages 67–76, New York, New
York, USA, 2017. ACM Press.

[IEE10] IEEE Standard for Modeling and Simulation: High Level Ar-
chitecture (HLA)– Framework and Rules. IEEE Std 1516-2010
(Revision of IEEE Std 1516-2000), pages 1 –38, August 2010.

75

The INTO-CPS Guide (Public)

[Inca] MathWorks Inc. Simulink. www.mathworks.com/
products/simulink.

[INCb] INCOSE Systems of Systems Primer. International Council on
Systems Engineering (INCOSE), Technical Publication TP-
2018-003-01.0.

[int] INTO-CPS: Reseach Project.

[KCH+90] K. C. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson.
Feature-Oriented Domain Analysis. Feasibility study,. Tech-
nical report, Carnegie Mellon University, 1990.

[KG16] C. Kleijn and M.A. Groothuis. Getting Started with 20-sim
4.5. Controllab Products B.V., 2016.

[KGD16] C. Kleijn, M.A. Groothuis, and H.G. Differ. 20-sim 4.6 Ref-
erence Manual. Controllab Products B.V., 2016.

[Kle06] Christian Kleijn. Modelling and Simulation of Fluid Power
Systems with 20-sim. Intl. Journal of Fluid Power, 7(3),
November 2006.

[KR68] D.C. Karnopp and R.C. Rosenberg. Analysis and Simulation
of Multiport Systems: the bond graph approach to physical sys-
tem dynamic. MIT Press, Cambridge, MA, USA, 1968.

[KS00] R. Kübler and W. Schiehlen. Two methods of simulator cou-
pling. Mathematical and Computer Modelling of Dynamical
Systems, 6(2):93–113, 2000.

[KS08] Daniel Kroening and Ofer Strichman. Decision Procedures -
An Algorithmic Point of View. Texts in Theoretical Computer
Science. An EATCS Series. Springer, 2008.

[LBF+10] Peter Gorm Larsen, Nick Battle, Miguel Ferreira, John
Fitzgerald, Kenneth Lausdahl, and Marcel Verhoef. The Over-
ture Initiative – Integrating Tools for VDM. SIGSOFT Softw.
Eng. Notes, 35(1):1–6, January 2010.

[LBL+18] Peter Gorm Larsen, Victor Bandur, Kenneth Lausdahl,
Casper Thule, Carl Gamble, Richard Payne, Adrian Pop,
Etienne Brosse, Jörg Brauer, Florian Lapschies, Marcel
Groothuis, Tom Bokhove, Christian Kleijn, Luis Diogo Couto,
and Christian König. Into-cps tool chain user manual. Tech-
nical report, INTO-CPS Association, September 2018.

76

www.mathworks.com/products/simulink
www.mathworks.com/products/simulink

The INTO-CPS Guide (Public)

[LCL13] Kenneth Lausdahl, Joey W. Coleman, and Peter Gorm
Larsen. Semantics of the VDM Real-Time Dialect. Technical
Report ECE-TR-13, Aarhus University, April 2013.

[LFW+16a] Peter Gorm Larsen, John Fitzgerald, Jim Woodcock, Pe-
ter Fritzson, Jörg Brauer, Christian Kleijn, Thierry Lecomte,
Markus Pfeil, Ole Green, Stylianos Basagiannis, and Andrey
Sadovykh. Integrated Tool Chain for Model-based Design of
Cyber-Physical Systems: The INTO-CPS Project. In CPS
Data Workshop, Vienna, Austria, April 2016.

[LFW+16b] Peter Gorm Larsen, John Fitzgerald, Jim Woodcock, René
Nilsson, Carl Gamble, and Simon Foster. Towards Semanti-
cally Integrated Models and Tools for Cyber-Physical Systems
Design. In Tiziana Margaria and Bernhard Steffen, editors,
Leveraging Applications of Formal Methods, Verification and
Validation, Proc 7th Intl. Symp., volume 9953 of Lecture Notes
in Computer Science, pages 171–186. Springer International
Publishing, 2016.

[LFW+17] Peter Gorm Larsen, John Fitzgerald, Jim Woodcock, Carl
Gamble, Richard Payne, and Kenneth Pierce. Features of
integrated model-based co-modelling and co-simulation tech-
nology. In Bernardeschi, Masci, and Larsen, editors, 1st Work-
shop on Formal Co-Simulation of Cyber-Physical Systems,
Trento, Italy, September 2017. LNCS, Springer-Verlag.

[LFWL16] Peter Gorm Larsen, John Fitzgerald, Jim Woodcock, and
Thierry Lecomte. Trustworthy Cyber-Physical Systems En-
gineering, chapter Chapter 8: Collaborative Modelling and
Simulation for Cyber-Physical Systems. Chapman and Hal-
l/CRC, September 2016. ISBN 9781498742450.

[LLJ+13] Peter Gorm Larsen, Kenneth Lausdahl, Peter Jørgensen, Joey
Coleman, Sune Wolff, and Nick Battle. Overture VDM-10
Tool Support: User Guide. Technical Report TR-2010-02,
The Overture Initiative, www.overturetool.org, April 2013.

[LMR+17] Wei Li, Alvaro Miyazawa, Pedro Ribeiro, Ana Cavalcanti,
Jim Woodcock, and Jon Timmis. From formalised state
machines to implementations of robotic controllers. CoRR,
abs/1702.01783, 2017.

77

The INTO-CPS Guide (Public)

[LP95] Peter Gorm Larsen and Wiesław Pawłowski. The Formal Se-
mantics of ISO VDM-SL. Computer Standards and Interfaces,
17(5–6):585–602, September 1995.

[LTL+16] Peter Gorm Larsen, Casper Thule, Kenneth Lausdahl, Vic-
tor Bandur, Carl Gamble, Etienne Brosse, Andrey Sadovykh,
Alessandra Bagnato, and Luis Diogo Couto. Integrated Tool
Chain for Model-Based Design of Cyber-Physical Systems. In
Peter Gorm Larsen, Nico Plat, and Nick Battle, editors, The
14th Overture Workshop: Towards Analytical Tool Chains,
pages 63–78, Cyprus, November 2016. Aarhus University, De-
partment of Engineering. ECE-TR-28.

[MCR+16] A. Miyazawa, A. Cavalcanti, P. Ribeiro, W. Li, J. Woodcock,
and J. Timmis. RoboChart Reference Manual. Technical re-
port, University of York, feb 2016.

[mod] MODELISAR: Research Project.

[Mod14] Modelica Association. Modelica - A Unified Object-Oriented
Language for Systems Modeling - Version 3.3 Revision 1. Stan-
dard Specification, July 2014.

[MZC12] Chris Marriott, Frank Zeyda, and Ana Cavalcanti. A tool
chain for the automatic generation of circus specifications
of simulink diagrams. In John Derrick, John S. Fitzgerald,
Stefania Gnesi, Sarfraz Khurshid, Michael Leuschel, Steve
Reeves, and Elvinia Riccobene, editors, Abstract State Ma-
chines, Alloy, B, VDM, and Z - Third International Confer-
ence, ABZ 2012, Pisa, Italy, June 18-21, 2012. Proceedings,
volume 7316 of Lecture Notes in Computer Science, pages 294–
307. Springer, 2012.

[NGL+14] Himanshu Neema, Jesse Gohl, Zsolt Lattmann, Janos Szti-
panovits, Gabor Karsai, Sandeep Neema, Ted Bapty, John
Batteh, Hubertus Tummescheit, and Chandrasekar Sureshku-
mar. Model-based integration platform for fmi co-simulation
and heterogeneous simulations of cyber-physical systems. In
The 10th International Modelica Conference 2014, Lund, Swe-
den, March 2014. Modelica Association.

[NK14] Tobias Nipkow and Gerwin Klein. Concrete Semantics: With
Isabelle/HOL. Springer, 2014.

78

The INTO-CPS Guide (Public)

[NLFS18] Pierluigi Nuzzo, Michele Lora, Yishai A. Feldman, and Al-
berto L. Sangiovanni-Vincentelli. CHASE: contract-based re-
quirement engineering for cyber-physical system design. In
2018 Design, Automation & Test in Europe Conference & Ex-
hibition, DATE 2018, Dresden, Germany, March 19-23, 2018,
pages 839–844. IEEE, 2018.

[NWP02] T. Nipkow, M. Wenzel, and L. C. Paulson. Isabelle/HOL: A
Proof Assistant for Higher-Order Logic, volume 2283 of LNCS.
Springer, 2002.

[OCW07] M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock.
A UTP Semantics for Circus. Formal Aspects of Computing,
21(1):3 – 32, 2007.

[OCW09] Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock. A UTP
semantics for Circus. Formal Asp. Comput., 21(1-2):3–32,
2009.

[ode] ODETTE: Research Project.

[OMG12] OMG. OMG Systems Modeling Language (OMG SysML),
Version 1.3. Technical report, Object Management Group,
2012.

[opea] OpenCPS: Research Project.

[Opeb] Open Source Modelica Consortium. OpenModelica User’s
Guide.

[OSF14] M. V. M Oliveira, A. C. A. Sampaio, and M. S. C. Filho.
Model-checking Circus state-rich specifications. In 11th Intl.
Conf. on Integrated Formal Methods, volume 8739 of LNCS,
pages 39–54. Springer, 2014.

[PBL+17] Adrian Pop, Victor Bandur, Kenneth Lausdahl, Marcel
Groothuis, and Tom Bokhove. Final Integration of Simula-
tors in the INTO-CPS Platform. Technical report, INTO-CPS
Deliverable, D4.3b, December 2017.

[PBM17] Maurizio Palmieri, Cinzia Bernardeschi, and Paolo Masci. Co-
simulation of semi-autonomous systems: the Line Follower
Robot case study. In 1st Workshop on Formal Co-Simulation
of Cyber-Physical Systems, Trento, Italy, September 2017.

[peg] PEGASUS: Research Project.

79

The INTO-CPS Guide (Public)

[PF10] Richard J. Payne and John S. Fitzgerald. Evaluation of Ar-
chitectural Frameworks Supporting Contract-based Specifica-
tion. Technical Report CS-TR-1233, School of Computing
Science, Newcastle University, December 2010.

[PFG+18] Ken Pierce, John Fitzgerald, Carl Gamble, Martin Mansfield,
Richard Payne, and Peter Gorm Larsen. Into-cps method
guidelines. Technical report, INTO-CPS Association, Septem-
ber 2018.

[PHP+14] Simon Perry, Jon Holt, Richard Payne, Jeremy Bryans, Claire
Ingram, Alvaro Miyazawa, Luís Diogo Couto, Stefan Haller-
stede, Anders Kaels Malmos, Juliano Iyoda, Marcio Cornelio,
and Jan Peleska. Final Report on SoS Architectural Models.
Technical report, COMPASS Deliverable, D22.6, September
2014. Available at http://www.compass-research.eu/.

[Pla18] André Platzer. Logical Foundations of Cyber-Physical Sys-
tems. Springer, 2018.

[PLS+17] Nicolai Pedersen, Kenneth Lausdahl, Enrique Vidal Sanchez,
Peter Gorm Larsen, and Jan Madsen. Distributed Co-
Simulation of Embedded Control Software with Exhaust Gas
Recirculation Water Handling System using INTO-CPS. In
Proceedings of the 7th International Conference on Simula-
tion and Modeling Methodologies, Technologies and Applica-
tions (SIMULTECH 2017), pages 73–82, Madrid, Spain, July
2017. ISBN: 978-989-758-265-3.

[Pnu77] Amir Pnueli. The Temporal Logic of Programs. In 18th Sym-
posium on the Foundations of Computer Science, pages 46–57.
ACM, November 1977.

[Pto14] Claudius Ptolemaeus, editor. System Design, Modeling, and
Simulation using Ptolemy II. Ptolemy.org, 2014.

[PVDML+17] Peter Palensky, Arjen A. Van Der Meer, Claudio David Lopez,
Arun Joseph, and Kaikai Pan. Cosimulation of Intelligent
Power Systems: Fundamentals, Software Architecture, Nu-
merics, and Coupling. IEEE Industrial Electronics Magazine,
11(1):34–50, March 2017.

[RABR16] Gibson-Thomas Robinson, Philip Armstrong, Alexandre
Boulgakov, and A. W. Roscoe. FDR3: A Parallel Refine-

80

The INTO-CPS Guide (Public)

ment Checker for CSP. Int. J. Softw. Tools Technol. Transf.,
18(2):149–167, apr 2016.

[Roq17] Pascal Roques. Systems Architecture Modeling with the Arca-
dia Method. Elsevier, 1st edition, November 2017.

[RW05] Holger Rasch and Heike Wehrheim. Checking the validity of
scenarios in UML models. In Martin Steffen and Gianluigi Za-
vattaro, editors, Formal Methods for Open Object-Based Dis-
tributed Systems, 7th IFIP WG 6.1 International Conference,
FMOODS 2005, Athens, Greece, June 15-17, 2005, Proceed-
ings, volume 3535 of Lecture Notes in Computer Science, pages
67–82. Springer, 2005.

[SES+18] Gerald Schweiger, Georg Engel, Josef Schoeggl, Irene Hafner,
Cláudio Gomes, and Thierry Nouidui. Co-Simulation - an
Empirical Survey: Applications, Recent Developments and
Future Challenges. In MATHMOD 2018 Extended Abstract
Volume, pages 125–126, Vienna, Austria, 2018. ARGESIM
Publisher Vienna.

[Tho13] Haydn Thompson, editor. Cyber-Physical Systems: Uplifting
Europe’s Innovation Capacity. European Commission Unit A3
- DG CONNECT, December 2013.

[TLLM18] Casper Thule, Kenneth Lausdahl, Peter Gorm Larsen, and
Gerd Meisl. Maestro: The INTO-CPS Co-Simulation Orches-
tration Engine. 2018. Submitted to Simulation Modelling
Practice and Theory.

[TWH07] Marija Trcka, Michael Wetter, and Jan Hensen. Comparison
of co-simulation approaches for building and HVAC/R sys-
tem simulation. In International IBPSA Conference, Beijing,
China, 2007.

[vA10] Job van Amerongen. Dynamical Systems for Creative Tech-
nology. Controllab Products, Enschede, Netherlands, 2010.

[Ver13] Verified Systems International GmbH. RTT-MBT Model-
Based Test Generator - RTT-MBT Version 9.0-1.0.0 User
Manual. Technical Report Verified-INT-003-2012, Verified
Systems International GmbH, 2013. Available on request from
Verified System International GmbH.

81

The INTO-CPS Guide (Public)

[Ver15a] Verified Systems International GmbH, Bremen, Germany. RT-
Tester 6.0: User Manual, 2015. https://www.verified.
de/products/rt-tester/, Doc. Id. Verified-INT-014-
2003.

[Ver15b] Verified Systems International GmbH, Bremen, Germany.
RT-Tester Model-Based Test Case and Test Data Gener-
ator – RTT-MBT: User Manual, 2015. https://www.
verified.de/products/model-based-testing/,
Doc. Id. Verified-INT-003-2012.

[WC01] J. C. P. Woodcock and A. L. C. Cavalcanti. A Concurrent Lan-
guage for Refinement. In A. Butterfield and C. Pahl, editors,
IWFM’01: 5th Irish Workshop in Formal Methods, BCS Elec-
tronic Workshops in Computing, Dublin, Ireland, July 2001.

[WCF+12] J. Woodcock, A. Cavalcanti, J. Fitzgerald, P. Larsen,
A. Miyazawa, and S. Perry. Features of CML: a Formal Mod-
elling Language for Systems of Systems. In Proceedings of the
7th International Conference on System of System Engineer-
ing. IEEE, July 2012.

[WCF+14] Jim Woodcock, Ana Cavalcanti, John Fitzgerald, Simon Fos-
ter, and Peter Gorm Larsen. Contracts in cml. In International
Symposium On Leveraging Applications of Formal Methods,
Verification and Validation, pages 54–73. Springer, 2014.

[WD96] Jim Woodcock and Jim Davies. Using Z – Specification, Re-
finement, and Proof. Prentice Hall International Series in
Computer Science, 1996.

[WLBF09] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and
John S. Fitzgerald. Formal methods: Practice and experience.
ACM Comput. Surv., 41(4):19:1–19:36, 2009.

[Woo14] Jim Woodcock. Engineering UToPiA - Formal Semantics for
CML. In Cliff Jones, Pekka Pihlajasaari, and Jun Sun, editors,
FM 2014: Formal Methods, volume 8442 of Lecture Notes in
Computer Science, pages 22–41. Springer International Pub-
lishing, 2014.

[WRF+15] David D Walden, Garry J Roedler, Kevin J Forsberg, R Dou-
glas Hamelin, and Thomas M Shortell, editors. Systems En-
gineering Handbook. A Guide for System Life Cycle Processes
and Activities, Version 4.0. Wiley, 4 edition, January 2015.

82

https://www.verified.de/products/rt-tester/
https://www.verified.de/products/rt-tester/
https://www.verified.de/products/model-based-testing/
https://www.verified.de/products/model-based-testing/

The INTO-CPS Guide (Public)

[WWC13] Kun Wei, Jim Woodcock, and Ana Cavalcanti. Circus Time
with Reactive Designs. In Unifying Theories of Programming,
volume 7681 of LNCS, pages 68–87. Springer, 2013.

[ZCWO17] Frank Zeyda, Ana Cavaclcanti, Jim Woodcock, and Julien
Ouy. SysML foundations for INTO-CPS. Deliverable D2.3a,
version 1.0, INTO-CPS project, December 2017.

[ZFF16] F. Zeyda, S. Foster, and L. Freitas. An axiomatic value model
for Isabelle/UTP. In Proc. 6th Intl. Symp. on Unifying Theo-
ries of Programming, volume 10134 of LNCS. Springer, 2016.
To appear.

[ZOFC18] Frank Zeyda, Julien Ouy, Simon Foster, and Ana Caval-
canti. Formalising cosimulation models. In Antonio Cerone
and Marco Roveri, editors, Software Engineering and For-
mal Methods - SEFM 2017 Collocated Workshops: DataMod,
FAACS, MSE, CoSim-CPS, and FOCLASA, Trento, Italy,
September 4-5, 2017, Revised Selected Papers, volume 10729 of
Lecture Notes in Computer Science, pages 453–468. Springer,
2018.

83

The INTO-CPS Guide (Public)

A List of Acronyms

ABS Abstract Behavioral Specification
AI Agrointelli
API Application Programming Interface
ASD Architecture Structure Diagram
AST Abstract Syntax Tree
AU Aarhus University
BCS Basic Control States
BMC Bounded Model Checker
CD Connections Diagram
CFD Computational Fluid Dynamics
CLP Controllab Products B.V.
COE Co-simulation Orchestration Engine
CORBA Common Object Request Broker Architecture
CPS Cyber-Physical Systems
CSP Communication Sequential Processes
CT Continuous-Time
CTL Computation Tree Logic
DAE Differential-Algebraic Equation
DE Discrete Event
DESTECS Design Support and Tooling for Embedded Control Software
DSE Design Space Exploration
DSL Domain Specific Language
FMI Functional Mockup Interface
FMI-Co Functional Mockup Interface – for Co-simulation
FMI-ME Functional Mockup Interface – Model Exchange
FMU Functional Mockup Unit
HiL Hardware-in-the-Loop
HLA High-Level Architecture
HMI Human Machine Interface
HOL Higher Order Logic
HVAC Heating, Ventilation, and Air Conditioning
HW Hardware
ICT Information Communication Technology
IDA Irish Development Agency
IDE Integrated Design Environment
LTL Linear Temporal Logic
M&S Modelling and Simulation
MA Master Algorithm

84

The INTO-CPS Guide (Public)

MARTE Modeling and Analysis of Real-Time and Embedded Systems
MBD Model-based Design
MBT Model-based Testing
MC/DC Modified Decision/Condition Coverage
MDE Model Driven Engineering
MiL Model-in-the-Loop
MIWG Model Interchange Working Group
NFP Non-Functional Property
ODE Ordinary Differential Equation
OMG Object Management Group
OS Operating System
OSLC Open Services for Lifecycle Collaboration
PID Proportional Integral Derivative
PROV-N The Provenance Notation
RE Requirements Engineering
ROM Reduced Order Model
RPC Remote Procedure Call
RTT Real-Time Tester
SiL Software-in-the Loop
SMT Satisfiability Modulo Theories
SoS System of Systems
SOS Structural Operational Semantics
ST Softeam
SUT System Under Test
SVN Subversion
SysML Systems Modelling Language
TA Test Automation
TE Test Environment
TIM Traceability Information Model
TR TRansitions
TRL Technology Readiness Level
TWT TWT GmbH Science & Innovation
UML Unified Modelling Language
UNEW University of Newcastle upon Tyne
UTP Unifying Theories of Programming
UTRC United Technologies Research Center
UY University of York
VDM Vienna Development Method
VSI Verified Systems International
WP Work Package
XML Extensible Markup Language

85

The INTO-CPS Guide (Public)

B Background on the Individual Tools

This appendix provides background information on each of the independent
tools of the INTO-CPS tool chain.

B.1 Modelio

Modelio is a comprehensive MDE [Fav05] workbench tool which supports
the UML2.x standard. Modelio adds modern Eclipse-based graphical envi-
ronment to the solid modelling and generation know-how obtained with the
earlier Softeam MDE workbench, Objecteering, which has been on the mar-
ket since 1991. Modelio provides a central repository for the local model,
which allows various languages (UML profiles) to be combined in the same
model, abstraction layers to be managed and traceability between different
model elements to be established. Modelio makes use of extension modules,
enabling the customisation of this MDE environment for different purposes
and stakeholders. The XMI module allows models to be exchanged between
different UML modelling tools. Modelio supports the most popular XMI
UML2 flavors, namely EMF UML2 and OMG UML 2.3. Modelio is one of
the leaders in the OMG Model Interchange Working Group (MIWG), due to
continuous work on XMI exchange improvements.

Among the extension modules, some are dedicated to IT system architects.
For system engineering, SysML or MARTE modules can be used. They
provide dedicated modelling support for dealing with general, software and
hardware aspects of embedded or cyber physical systems. In addition, sev-
eral utility modules are available, such as the Document Publisher which
provides comprehensive support for the generation of different types of doc-
ument.

Modelio is highly extendable and can be used as a platform for building
new MDE features. The tool enables users to build UML2 Profiles, and to
combine them with a rich graphical interface for dedicated diagrams, model
element property editors and action command controls. Users can use several
extension mechanisms: light Python scripts or a rich Java API, both of which
provide access to Modelio‘s model repository and graphical interface.

86

The INTO-CPS Guide (Public)

B.2 Overture

The Overture platform [LBF+10] is an Eclipse-based IDE for the development
and validation of system specifications in three dialects of the specification
language of the Vienna Development Method (VDM). Overture is distributed
with a suite of examples and step-by-step tutorials which demonstrate the
features of the three dialects. A user manual for the platform itself is also
provided [LLJ+13], which is accessible through Overture’s help system. Al-
though certain features of Overture are relevant only to the development of
software systems, VDM itself can be used for the specification and validation
of any system with distinct states, known as discrete-event systems, such as
physical plants, protocols, controllers (both mechanical and software) etc.,
and Overture can be used to aid in validation activities in each case.

Overture supports the following activities:

• The definition and elaboration of syntactically correct specifications in
any of the three dialects, via automatic syntax and type validation.

• The inspection and assay of automatically generated proof obligations
which ensure correctness in those aspects of specification validation
which can not be automated.

• Direct interaction with a specification via an execution engine which
can be used on those elements of the specification written in an exe-
cutable subset of the language.

• Automated testing of specifications via a custom test suite definition
language and execution engine.

• Visualisation of test coverage information gathered from automated
testing.

• Visualisation of timing behaviours for specifications incorporating tim-
ing information.

• Translation to/from UML system representations.

• For specifications written in the special executable subset of the lan-
guage, obtaining Java implementations of the specified system auto-
matically.

For more information and tutorials, please refer to the documentation dis-
tributed with Overture.

87

The INTO-CPS Guide (Public)

The following is a brief introduction to the features of the three dialects of
the VDM specification language.

VDM-SL This is the foundation of the other two dialects. It supports the
development of monolithic state-based specifications with state transition
operations. Central to a VDM-SL specification is a definition of the state
of the system under development. The meaning of the system and how it
operates is conveyed by means of changes to the state. The nature of the
changes is captured by state-modifying operations. These may make use of
auxiliary functions which do not modify state. The language has the usual
provisions for arithmetic, new dependent types, invariants, pre- and post-
conditions etc. Examples can be found in the VDM-SL tutorials distributed
with Overture.

VDM++ The VDM++ dialect supports a specification style inspired by
object-oriented programming. In this specification paradigm, a system is
understood as being composed of entities which encapsulate both state and
behaviour, and which interact with each other. Entities are defined via tem-
plates known as classes. A complete system is defined by specifying instances
of the various classes. The instances are independent of each other, and they
may or may not interact with other instances. As in object-oriented program-
ming, the ability of one component to act directly on any other is specified
in the corresponding class as a state element. Interaction is naturally carried
out via precisely defined interfaces. Usually a single class is defined which
represents the entire system, and it has one instance, but this is only a con-
vention. This class may have additional state elements of its own. Whereas a
system in VDM-SL has a central state which is modified throughout the life-
time of the system, the state of a VDM++ system is distributed among all of
its components. Examples can be found in the VDM++ tutorials distributed
with Overture.

VDM-RT VDM-RT is a small extension to VDM++ which adds two pri-
mary features:

• The ability to define how the specified system is envisioned to be allo-
cated on a distributed execution platform, together with the commu-
nication topology.

• The ability to specify the timing behaviours of individual components,
as well as whether certain behaviours are meant to be cyclical.

Finer details can be specified, such as execution synchronisation and mu-

88

The INTO-CPS Guide (Public)

tual exclusion on shared resources. A VDM-RT specification has the same
structure as a VDM++ specification, only the conventional system class of
VDM++ is mandatory in VDM-RT and it enables the description of dis-
tributed systems. Examples can be found in the VDM-RT tutorials dis-
tributed with Overture. The integration of Overture into the INTO-CPS
tool-chain is realised via the FMI standard.

B.3 20-sim

20-sim [Con13, Bro97] is a commercial modelling and simulation software
package for mechatronic systems. With 20-sim, models can be created graph-
ically, similar to drawing an engineering scheme. With these models, the
behaviour of dynamic systems can be analysed and control systems can be
designed. 20-sim models can be exported as C-code to be run on hardware
for rapid prototyping and HiL-simulation. 20-sim includes tools that allow
an engineer to create models quickly and intuitively. Models can be cre-
ated using equations, block diagrams, physical components and bond graphs
[KR68]. Various tools give support during the model building and simulation.
Other toolboxes help to analyse models, build control systems and improve
system performance. Figure 11 shows 20-sim with a model of a controlled

Figure 11: Example of a hexapod model in 20-sim.

hexapod. The mechanism is generated with the 3D Mechanics Toolbox and
connected with standard actuator and sensor models from the mechanics li-
brary. The hexapod is controlled by PID controllers which are tuned in the

89

The INTO-CPS Guide (Public)

frequency domain. Everything that is required to build and simulate this
model and generate the controller code for the real system is included inside
the package.

The 20-sim Getting Started manual [KG16] contains examples and step-by-
step tutorials that demonstrate the features of 20-sim. More information on
20-sim can be found at http://www.20sim.com and in the user manual
at http://www.20sim.com/webhelp [KGD16]. The integration of 20-
sim into the INTO-CPS tool-chain is realised via the FMI standard.

B.4 OpenModelica

OpenModelica [Fri04] is an open-source Modelica-based modelling and sim-
ulation environment. Modelica [FE98] is an object-oriented, equation based
language to conveniently model complex physical systems containing, e.g.,
mechanical, electrical, electronic, hydraulic, thermal, control, electric power
or process-oriented subcomponents. The Modelica language (and OpenMod-
elica) supports continuous, discrete and hybrid time simulations. OpenMod-
elica already compiles Modelica models into FMU, C or C++ code for simula-
tion. Several integration solvers, both fixed and variable step size, are avail-
able in OpenModelica: euler, rungekutta, dassl (default), radau5, radau3,
radau1.

OpenModelica can be interfaced to other tools in several ways as described
in the OpenModelica user’s manual [Opeb]:

• via command line invocation of the omc compiler

• via C API calls to the omc compiler dynamic library

• via the CORBA interface

• via OMPython interface [GFR+12]

OpenModelica has its own scripting language, Modelica script (mos files),
which can be used to perform actions via the compiler API, such as load-
ing, compilation, simulation of models or plotting of results. OpenModelica
supports Windows, Linux and Mac Os X.

The integration of OpenModelica into the INTO-CPS tool chain is realised
via compliance with the FMI standard, and is described in Deliverable D4.3b
[PBL+17].

90

http://www.20sim.com
http://www.20sim.com/webhelp

The INTO-CPS Guide (Public)

B.5 RT-Tester

The RT-Tester [Ver15a] is a test automation tool for automatic test gener-
ation, test execution and real-time test evaluation. Key features include a
strong C/C++-based test script language, high performance multi-threading,
and hard real-time capability. The tool has been successfully applied in avion-
ics, rail automation, and automotive test projects. In the INTO-CPS tool
chain, RT-Tester is responsible for model-based testing, as well as for model
checking. This section gives some background information on the tool from
these two perspectives.

B.5.1 Model-based Testing

The RT-Tester Model Based Test Case and Test Data Generator (RTT-
MBT) [Ver15b] supports model-based testing (MBT), that is, automated
generation of test cases, test data, and test procedures from UML/SysML
models. A number of common modelling tools can be used as front-ends for
this. The most important technical challenge in model-based test automation
is the extraction of test cases from test models. RTT-MBT combines an SMT
solver with a technique akin to bounded model checking so as to extract finite
paths through the test model according to some predefined criterion. This
criterion can, for instance, be MC/DC coverage, or it can be requirements
coverage (if the requirements are specified as temporal logic formulae within
the model). A further aspect is that the environment can be modelled within
the test model. For example, the test model may contain a constraint such
that a certain input to the system-under-test remains in a predefined range.
This aspect becomes important once test automation is lifted from single test
models to multi-model cyber-physical systems. The derived test procedures
use the RT-Tester Core as a back-end, allowing the system under test to be
provided on real hardware, software only, or even just simulation to aid test
model development.

Further, RTT-MBT includes requirement tracing from test models down to
test executions and allows for powerful status reporting in large scale testing
projects.

B.5.2 Model Checking of Timed State Charts

RTT-MBT applies model checking to behavioural models that are specified
as timed state charts in UML and SysML, respectively. From these models,

91

The INTO-CPS Guide (Public)

a transition relation is extracted and represented as an SMT formula in bit-
vector theory [KS08], which is then checked against LTL formulae [Pnu77]
using the algorithm of Biere et al. [BHJ+06]. The standard setting of RTT-
MBT is to apply model checking to a single test model, which consists of the
system specification and an environment.

• A component called TestModel that is annotated with stereotype TE.

• A component called SystemUnderTest that is annotated with stereo-
type SUT.

RTT-MBT uses the stereotypes to infer the role of each component. The in-
teraction between these two parts is implemented via input and output inter-
faces that specify the accessibility of variables using UML stereotypes.

• A variable that is annotated with stereotype SUT2TE is written by
the system model and readable by the environment.

• A variable that is annotated with stereotype TE2SUT is written by
the environment and read by the system model as an input.

A simple example is depicted in Figure 12, which shows a simple composite
structure diagram in Modelio for a turn indication system. The purpose
of the system is to control the lamps of a turn indication system in a car.
Further details are given in [Ver13]. The test model consists of the two
aforementioned components and two interfaces:

• Interface1 is annotated with stereotype TE2SUT and contains three
variables voltage, TurnIndLvr and EmerSwitch. These variables
are controlled by the environment and fed to the system under test as
inputs.

• Interface2 is annotated with stereotype SUT2TE and contains two
variables LampsLeft and LampsRight. These variables are con-
trolled by the system under test and can be read by the environment.

Observe that the two variables LampsLeft and LampsRight have type
int, but should only hold values 0 or 1 to indicate states on or off. A
straightforward system property that could be verified would thus be that
LampsLeft and LampsRight indeed are only assigned 0 or 1, which could
be expressed by the following LTL specification:

G(0 ≤ LampsLeft ≤ 1 ∧ 0 ≤ LampsRight ≤ 1)

A thorough introduction with more details is given in the RTT-MBT user
manual [Ver13].

92

The INTO-CPS Guide (Public)

Figure 12: Simple model that highlights interfaces between the environment
and the system-under-test.

B.6 Eclipse 4diac™

Eclipse 4diac™ (4diac from now on) provides an open source infrastructure
for distributed industrial process measurement and control systems based
on the IEC 61499 standard. IEC 61499 defines a domain-specific modeling
language for developing distributed industrial control solutions. IEC 61499
extends IEC 61131-1 by improving the encapsulation of software components
for increased re-usability, providing a vendor-independent format, and sim-
plifying support for controller-to-controller communication. Its distribution
functionality and the inherent support for dynamic reconfiguration provide
the required infrastructure for Industrie 4.0 and industrial IoT applications.
4diac allows the development of distributed control systems compliant to the
IEC 61499 standard and three of its main projects are:

• 4diac FORTE: The runtime environment is a small portable C++ im-
plementation of an IEC 61499 runtime environment, which supports the
execution of distributed control programs on small embedded devices.
4diac FORTE runs above a device’s OS. It is a multi-threaded and low
memory consuming runtime environment. The runtime environment
has been tested on the following systems:

– Windows Cygwin on i386, ppc and xScale

93

The INTO-CPS Guide (Public)

– Linux on i386, ppc and xScale

– NetOS

– RTOS on IPC@chip

– eCos ARM7

– VxWorks

– freeRTOS

• 4diac IDE: This is the IDE written in Java and based on the Eclipse
framework and provides an extensible engineering environment for mod-
eling distributed control applications compliant to the IEC 61499 stan-
dard. The user uses 4diac IDE to create FBs, applications, configure
the devices and all related to IEC 61499 and also download this to
devices running 4diac FORTE.

• Function Block Library: contains Function Blocks which are available
in 4diac FORTE and can, therefore, be used to create IEC 61499 com-
pliant control applications.

Figure 13: Overview of the 4diac IDE

94

The INTO-CPS Guide (Public)

From version 1.10, 4diac has the capability to export each device of a sys-
tem as an FMU (FMI 2.0) in order to test the behaviour of the controller
against another FMU of the controlled system in the co-simulation environ-
ment. More detailed information about 4diac can be found in the official
website:

http://www.eclipse.org/4diac/en_help.php

95

http://www.eclipse.org/4diac/en_help.php

	Contents
	Introduction
	Challenges in Engineering CPSs
	Time to Market
	Diversity of Design Models
	Collaboration

	INTO-CPS in a Nutshell
	How INTO-CPS works
	Industrial Case studies
	The INTO-CPS foundations
	The INTO-CPS methods and guidelines

	The INTO-CPS Foundations
	Foundations of the SysML profile for CPS modelling
	Discrete Event Models
	Continuous Models
	Functional Mock-up Interface

	INTO-CPS Method Guidelines
	Introduction
	Concepts and Terminology
	Activities Enabled by INTO-CPS
	Configuring Multi-Models
	An Overview of Advanced Methods

	The INTO-CPS Tool Chain
	Modelio
	Modelling tools
	RT Tester
	3D animation
	The INTO-CPS Application

	The INTO-CPS Industrial Case Studies
	The Automotive Case Study
	The Agricultural Case Study
	The Building HVAC Case Study
	The Railway Case Study
	The Aerospace Case Study
	The Manufacturing Case Study
	The Combustion Engine Case Study
	The Mars Rover Case Study

	Related Work
	Future Directions
	Adapting FMUs Easily to Ones Needs
	Enlarging the tools and standards supported by the INTO-CPS Tool Suite
	Use in a Cloud-based Eco-system/Marketplace
	Use in a Digital Twin setting
	Increased Support for Dynamic Evolution Scenarios
	Incorporation of Computational Fluid Dynamics Co-simulations
	Increased support for Human Interaction
	Increased support for Network Considerations
	Intelligence, Adaptivity and Autonomy
	Tradeoff in Abstraction between Speed and Accuracy

	References
	List of Acronyms
	Background on the Individual Tools
	Modelio
	Overture
	20-sim
	OpenModelica
	RT-Tester
	Eclipse 4diac™

